[1] G. Adomian, Solving Frontier Problem of Physics: The Decomposition Method, Kluwer Academic Publishers, Dordrecht, Boston and London, 1994.

[2] A. Aghajani, J. Banas, and N. Sabzali, Some generalizations of Darbo’s fixed point theorem and applications, Bull. Belg. Math. Soc., 2 (2013), 345-358.

[3] A. Alshabanat, M. Jleli, S. Kumar, and B. Samet, Generalization of the Caputo-Fabrizio fractional derivative and applications to electrical circuits, Front. Phys., 8 (2020), 5-15.

[4] A. Atangana and J. F. G´omez-Aguilar, Numerical approximation of Riemann-Liouville definition of fractional derivative from Riemann-Liouville to Atangana-Baleanu, Numer. Meth. Partial Differ. Equ., 34 (2018), 1502-1523.

[5] J. Banas and K. Goebel, Measures of Noncompactness in Banach Spaces, Marcel Dekker New York, 1980.

[6] J. Ban´as and M. Krajewska, Existence of solutions for infinite systems of differential equations in spaces of tempered sequences, Electron. J. Diff. Equ., 60 (2017), 1-28.

[7] J. Biazar and M. Eslami, Modified homotopy perturbation method for solving systems of Volterra integral equations of the second kind, J. King Saud University-Sci., 1 (2011), 35-39.

[8] J. Biazar, M. Eslami, and H. Aminikhah, Application of homotopy perturbation method for system of Volterra integral equations of the first kind, Chaos Solitons Fractals, 5 (2009), 3020-3026.

[9] E. Capelas de Oliveira and J. A. Tenreiro Machado, A review of definitions for fractional derivatives and integral, Math. Probl. Eng., 2014 (2014), 1-6.

[10] M. Caputo, Linear models of dissipation whose Q is almost frequency independent-II, Geophys. J. Int., 13 (1967), 529-539.

[11] M. Caputo, Elasticit`ae Dissipazione, Zanichelli, Bologna, 1969.

[12] M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel, Prog. Fract. Differ. Appl., 1 (2015), 73-85.

[13] G. Darbo, Punti uniti in trasformazioni a codominio non compatto (Italian), Rend. Semin. Mat. dell Univ. Padovo., 24 (1955), 84-92.

[14] A. Das, B. Hazarika, R. Arab, R. P. Agarwal, and H. K. Nashine, Solvability of infinite system of fractional differential equations in the space of tempered sequences, Filomat, 17 (2019), 5519-5530.

[15] A. Das, B. Hazarika, and B. C. Deuri, Existence of an infinite system of fractional hybrid differential equations in a tempered sequence space, Fract. Calc. Appl. Anal., 5 (2022), 2113-2125.

[16] M. Eslami, New homotopy perturbation method for a special kind of Volterra integral equations in two-dimensional spaces, Computat. Math. Modell., 1 (2014), 135-148.

[17] M. F. Farayola, S. Shafie, F. M. Siam, and I. Khan, Numerical simulation of normal and cancer cells populations with fractional derivative under radiotherapy, Comput. Meth. Programs Biomed., 187 (2020), 105202.

[18] B. Ghanbari, S. Kumar, and R. Kumar, A study of behaviour for immune and tumor cells in immunogenetic tumour model with non-singular fractional derivative, Chaos Solitons Fractals, 133 (2020), 109619.

[19] B. Hazarika, E. Karapinar, R. Arab, and M. Rabbani, Metric-like spaces to prove existence of

solution for nonlinear quadratic integral equation and numerical method to solve it, J. Comput. Appl. Math., 328 (2018), 302-311.

[20] R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific Publishing New York, 2000.

[21] K. Kuratowski, Sur les espaces complets, Fundam. Math., 30 (1930), 301-309.

[22] J. Liouville, Sur le calcul des diff´erentielles `a indices quelconques, J. Ec. Polytech., 13 (1832).

[23] J. Lozada and J. J. Nieto, Properties of a new fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 87-92.

[24] J. T. Machado, V. Kiryakova, and F. Mainardi, Recent history of fractional calculus, Commun. Nonlinear Sci. Numer. Simul., 16 (2011), 1140-1153.

[25] H. Mehravarana, H. A. Kayvanlooa, and R. Allahyaria, Solvability of infinite systems of fractional differential equations in the space of tempered sequence space mβ(ϕ), Int. J. Nonlinear Anal. Appl., 1 (2022), 1023-1034.

[26] K. S. Miller and B. Ross, An Introduction to Fractional Calculus and Fractional Differential Equations, Wiley, New York, 1993.

[27] M. Mursaleen, B. Bilal, and S. M. H. Rizvi, Applications of measure of noncompactness to infinite system of fractional differential equations, Filomat, 11 (2017), 3421-3432.

[28] M. Mursaleen and S. A. Mohiuddine, Applications of measures of noncompactness to the infinite system of differential equations in lp spaces, Nonlinear Anal., 4 (2012), 2111-2115.

[29] I. Podlubny, An Introduction to Fractional Derivatives, Fractional Differential Equations to Methods of Their Solution and Some of Their Applications, Academic Press, New York, 1999.

[30] M. Rabbani, New homotopy perturbation method to solve non-linear problems, J. Math. Comput. Sci., 7 (2013), 272-275.

[31] M. Rabbani, A. Das, B. Hazarika, and R. Arab, Measure of noncompactness of a new space of tempered sequences and its application on fractional differential equations, Chaos Solitons Fractals, 140 (2020), 110221.

[32] M. Rabbani and B. Zarali, Solution of Fredholm integro-differential equations system by modified decomposition method, J. Math. Comput. Sci., 4 (2012), 258-264.

[33] S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives, Gordon Breach, New York, 1993.

[34] W. L. C. Sargent, Some sequence spaces related to the ℓp spaces, J. Lond. Math. Soc., 2 (1960), 161-171.

[35] P. Veeresha, D. G. Prakasha, and H. M. Baskonus, New numerical surfaces to the mathematical model of cancer chemotherapy effect in Caputo fractional derivatives, Chaos Solitons Fractal., 29 (2019).

[36] H. Yepez-Martınez, and J. F. Gomez-Aguilar, A new modified definition of Caputo-Fabrizio fractional order derivative and their applications to the multi step homotopy analysis method, J. Comput. Appl. Math., 346 (2019), 247-260.