Document Type : Original Article


PDPM-Indian Institute of Information Technology, Design and Manufacturing Jabalpur-482005, India


In this article, we study an infinite system of fractional differential equations involving a generalized Caputo-Fabrizio fractional operator. By using Darbo’s fixed point theorem and the concept of measure of noncompactness, we establish the existence of a solution for the proposed system in tempered sequence space. Suitable examples are given to strengthen our article. At the end, we give an iterative algorithm using the homotopy perturbation method and Adomian decomposition method to solve our given example with high accuracy.


[1] G. Adomian, Solving Frontier Problem of Physics: The Decomposition Method, Kluwer Academic Publishers, Dordrecht, Boston and London, 1994.
[2] A. Aghajani, J. Banas, and N. Sabzali, Some generalizations of Darbo’s fixed point theorem and applications, Bull. Belg. Math. Soc., 2 (2013), 345-358.
[3] A. Alshabanat, M. Jleli, S. Kumar, and B. Samet, Generalization of the Caputo-Fabrizio fractional derivative and applications to electrical circuits, Front. Phys., 8 (2020), 5-15.
[4] A. Atangana and J. F. G´omez-Aguilar, Numerical approximation of Riemann-Liouville definition of fractional derivative from Riemann-Liouville to Atangana-Baleanu, Numer. Meth. Partial Differ. Equ., 34 (2018), 1502-1523.
[5] J. Banas and K. Goebel, Measures of Noncompactness in Banach Spaces, Marcel Dekker New York, 1980.
[6] J. Ban´as and M. Krajewska, Existence of solutions for infinite systems of differential equations in spaces of tempered sequences, Electron. J. Diff. Equ., 60 (2017), 1-28.
[7] J. Biazar and M. Eslami, Modified homotopy perturbation method for solving systems of Volterra integral equations of the second kind, J. King Saud University-Sci., 1 (2011), 35-39.
[8] J. Biazar, M. Eslami, and H. Aminikhah, Application of homotopy perturbation method for system of Volterra integral equations of the first kind, Chaos Solitons Fractals, 5 (2009), 3020-3026.
[9] E. Capelas de Oliveira and J. A. Tenreiro Machado, A review of definitions for fractional derivatives and integral, Math. Probl. Eng., 2014 (2014), 1-6.
[10] M. Caputo, Linear models of dissipation whose Q is almost frequency independent-II, Geophys. J. Int., 13 (1967), 529-539.
[11] M. Caputo, Elasticit`ae Dissipazione, Zanichelli, Bologna, 1969.
[12] M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel, Prog. Fract. Differ. Appl., 1 (2015), 73-85.
[13] G. Darbo, Punti uniti in trasformazioni a codominio non compatto (Italian), Rend. Semin. Mat. dell Univ. Padovo., 24 (1955), 84-92.
[14] A. Das, B. Hazarika, R. Arab, R. P. Agarwal, and H. K. Nashine, Solvability of infinite system of fractional differential equations in the space of tempered sequences, Filomat, 17 (2019), 5519-5530.
[15] A. Das, B. Hazarika, and B. C. Deuri, Existence of an infinite system of fractional hybrid differential equations in a tempered sequence space, Fract. Calc. Appl. Anal., 5 (2022), 2113-2125.
[16] M. Eslami, New homotopy perturbation method for a special kind of Volterra integral equations in two-dimensional spaces, Computat. Math. Modell., 1 (2014), 135-148.
[17] M. F. Farayola, S. Shafie, F. M. Siam, and I. Khan, Numerical simulation of normal and cancer cells populations with fractional derivative under radiotherapy, Comput. Meth. Programs Biomed., 187 (2020), 105202.
[18] B. Ghanbari, S. Kumar, and R. Kumar, A study of behaviour for immune and tumor cells in immunogenetic tumour model with non-singular fractional derivative, Chaos Solitons Fractals, 133 (2020), 109619.
[19] B. Hazarika, E. Karapinar, R. Arab, and M. Rabbani, Metric-like spaces to prove existence of
solution for nonlinear quadratic integral equation and numerical method to solve it, J. Comput. Appl. Math., 328 (2018), 302-311.
[20] R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific Publishing New York, 2000.
[21] K. Kuratowski, Sur les espaces complets, Fundam. Math., 30 (1930), 301-309.
[22] J. Liouville, Sur le calcul des diff´erentielles `a indices quelconques, J. Ec. Polytech., 13 (1832).
[23] J. Lozada and J. J. Nieto, Properties of a new fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 87-92.
[24] J. T. Machado, V. Kiryakova, and F. Mainardi, Recent history of fractional calculus, Commun. Nonlinear Sci. Numer. Simul., 16 (2011), 1140-1153.
[25] H. Mehravarana, H. A. Kayvanlooa, and R. Allahyaria, Solvability of infinite systems of fractional differential equations in the space of tempered sequence space mβ(ϕ), Int. J. Nonlinear Anal. Appl., 1 (2022), 1023-1034.
[26] K. S. Miller and B. Ross, An Introduction to Fractional Calculus and Fractional Differential Equations, Wiley, New York, 1993.
[27] M. Mursaleen, B. Bilal, and S. M. H. Rizvi, Applications of measure of noncompactness to infinite system of fractional differential equations, Filomat, 11 (2017), 3421-3432.
[28] M. Mursaleen and S. A. Mohiuddine, Applications of measures of noncompactness to the infinite system of differential equations in lp spaces, Nonlinear Anal., 4 (2012), 2111-2115.
[29] I. Podlubny, An Introduction to Fractional Derivatives, Fractional Differential Equations to Methods of Their Solution and Some of Their Applications, Academic Press, New York, 1999.
[30] M. Rabbani, New homotopy perturbation method to solve non-linear problems, J. Math. Comput. Sci., 7 (2013), 272-275.
[31] M. Rabbani, A. Das, B. Hazarika, and R. Arab, Measure of noncompactness of a new space of tempered sequences and its application on fractional differential equations, Chaos Solitons Fractals, 140 (2020), 110221.
[32] M. Rabbani and B. Zarali, Solution of Fredholm integro-differential equations system by modified decomposition method, J. Math. Comput. Sci., 4 (2012), 258-264.
[33] S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives, Gordon Breach, New York, 1993.
[34] W. L. C. Sargent, Some sequence spaces related to the ℓp spaces, J. Lond. Math. Soc., 2 (1960), 161-171.
[35] P. Veeresha, D. G. Prakasha, and H. M. Baskonus, New numerical surfaces to the mathematical model of cancer chemotherapy effect in Caputo fractional derivatives, Chaos Solitons Fractal., 29 (2019).
[36] H. Yepez-Martınez, and J. F. Gomez-Aguilar, A new modified definition of Caputo-Fabrizio fractional order derivative and their applications to the multi step homotopy analysis method, J. Comput. Appl. Math., 346 (2019), 247-260.