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Solution of an infinite system of fractional

differential equations in tempered sequence space

Rahul, Sukanta Halder, and Nihar Kumar Mahato∗

Abstract. In this article, we study an infinite system of fractional differential

equations involving a generalized Caputo-Fabrizio fractional operator. By using

Darbo’s fixed point theorem and the concept of measure of noncompactness, we

establish the existence of a solution for the proposed system in tempered sequence

space. Suitable examples are given to strengthen our article. At the end, we give

an iterative algorithm using the homotopy perturbation method and Adomian

decomposition method to solve our given example with high accuracy.

1. Introduction

Fractional calculus is a mathematical field that confines the study of derivatives

and integrals of arbitrary order. The beginning of fractional calculus was done in

the seventeenth century when Leibniz first proposed the notion of a derivative with

an order of x = 1
2
in his letter to L’Hospital in 1695. This historical marks the early

origins of fractional calculus, as documented in references [24, 26, 33]. Since its

inception, fractional calculus has preserved contributions from distinguished mathe-

maticians including Abel, Laurent, Laplace, Fourier, Weyl, Riemann, Liouville, and

Euler. These distinguished individuals have played significant roles in advancing

the field throughout its history. The studies of fractional operators have given rise

to numerous definitions, and the theories of fractional calculus have been advanced
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by prominent mathematicians, including Caputo, Leibniz, Riemann, Grunwald, Li-

ouville, and Letnikov. For further in-depth information, one can refer to relevant

references [9, 10, 11, 22]. This branch of mathematics perceives utility in simulating

manifold, physical and engineering phenomena, including but not limited to electro-

magnetics, fluid mechanics, and signal processing. To advance fractional calculus,

many researchers have dedicated their efforts to establishing solutions for nonlinear

differential equations that involve multiple fractional differential operators, like Hil-

fer, Riemann-Liouville, Caputo, and others. For more details, see [4, 20, 29, 35].

In order to overcome the constraints of the existing operators, Caputo and Fabrizio

[12] proposed an innovative definition of fractional derivative that terminates the

presence of a singular kernel

CFDδf(τ) =
1

1− δ

τ∫
0

exp

(
−δ(τ − ν)

1− δ

)
f

′
(ν)dν, τ ≥ 0, (1)

where 0 < δ < 1. This new formulation provides a solution to the problem, providing

a more effective approach for modeling fractional calculus in various applications.

The introduction of the Caputo-Fabrizio fractional derivative has provoked extended

interest among researchers in exploring FDE. This is essentially due to its special

characteristic of possessing a non-singular kernel. This approach has garnered at-

tention for its ability to effectively model a wide range of phenomena, including

fractional dynamics [36], radiotherapy for cancer cells using fractional derivatives

[17], interactions between immune and tumour cells in immunogenetic tumours [18],

as well as processes demonstrate manifold memory effects. Losada and Nieto [23]

considered the following three types of Caputo-Fabrizio FDE (2), (3) and (4). They

established the existence and uniqueness solution of the following FDE

CFDδu(τ) = γ(τ), τ ≥ 0, 0 < δ < 1,

u(0) = u0 ∈ R, (2)

CFDδu(τ) = λu(τ) + γ(τ), τ ≥ 0, λ ∈ R,
u(0) = u0 ∈ R, (3)

CFDδu(τ) = ϕ(τ, u(τ)), τ ≥ 0, 0 < δ < 1,

u(0) = u0 ∈ R. (4)

where R denotes the set of real numbers, γ, ϕ are continuous functions on [0,∞),

and [0, T ] × R, T > 0, respectively, and u(τ) is the solution of the corresponding

equation.

In 2020, Alshabanat et al. [3] proposed a new fractional operator that is a gen-

eralization of Caputo-Fabrizio fractional operator, and this new formula contains
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exponential and trigonometric functions, permitting for a wider range of applica-

tions.

Definition 1.1. [3] The fractional differential operator of order (δ + n) having

kernel which contains the exponential and trigonometric functions of the function

u ∈ Cn+1[0,∞) is defined by

(
Dδ+n

0,h,ku
)
(τ) =

(
1

1− δ

)(
h2 + k2

h

) τ∫
0

e
−hδ(τ−ν)

1−δ cos

(
kδ(τ − ν)

1− δ

)
u(n+1)(ν)dν, τ > 0,

(5)

where h > 0, k ≥ 0, 0 < δ < 1, n ∈ N ∪ {0}, u ∈ Cn+1[0,∞).

Remark 1.2. [3] If we take h = 1 and k = 0 in Definition 1.1, then we have

(
Dδ+n

0,1,0u
)
(τ) =

1

1− δ

τ∫
0

exp

(
−δ(τ − ν)

1− δ

)
f

′
(ν)dν, τ ≥ 0 = CF

(
Dδ+nu

)
(τ) τ > 0,

which is the Caputo-Fabrizio fractional operator CFDδ+n of order (δ + n).

Alshabanat et al. [3] studied the existence and uniqueness solution of the follow-

ing linear and nonlinear FDE by taking the generalized Caputo-Fabrizio fractional

derivative defined by Definition 1.1(
Dδ

0,h,ku
)
(τ) = γ(τ), 0 < τ < T,

u(0) = u0 ∈ R, (6)

and (
Dδ

0,h,ku
)
(τ) = ϕ(τ, u(τ)), 0 < τ < T,

u(0) = u0 ∈ R, (7)

where, 0 < δ < 1 and T > 0 and γ is a continuous functions on [0, T ] and ϕ is a

continuous functions on ([0, T ]× R).
Motivated by the article [3], we consider the following infinite system of nonlinear

FDE of order 0 < δ < 1 as(
Dδ

0,h,kun
)
(τ) = fn(τ, un(τ)), 0 < τ < T, (8)

where
(
Dδ

0,h,ku
)
is the generalized Caputo-Fabrizio fractional operator defined in [3]

with initial condition un(τ)τ=0 = un(0) = 0, un ∈ C1[0, T ], and fn ∈ C1([0, T ]× R)
with fn(0, un(0)) = 0. Here, we are concerned with the existence of a solution of the

infinite system of nonlinear FDE (8). As a main tool, we use MNC to accomplish

our aim. The MNC is defined by Kuratowski [21] in 1930. The concept of the MNC

is used by various authors to explore the existence of solutions for infinite system of

differential and integral equations. The contributions include the work of Mursaleen
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et al. [27], who established the existence of solutions for an infinite system of FDE

in the spaces c0 and lp. Mursaleen and Mohiuddine [28] investigated the existence

of solution of an infinite system of differential equations in the lp space. Also, Das

et al. [14] studied the existence of solutions of an infinite system of FDE in the

tempered sequence space as well as Rabbani et al. [31] studied the existence of

solutions for FDE in the tempered sequence space. These works serve as significant

references for those who are interested in this particular area of research. In recent

years, Mehravarana et al. [25] and Das et al. [15] have further studied this field

by obtaining the existence of solutions of a system of FDE and a method of hybrid

FDE, respectively, in the tempered sequence space.

In our study, we discussed some preliminaries of MNC with some important fixed

point theorem and an important proposition in section 2. Next, the existence of a

solution of the Eq. (8) using DFPT via MNC is discussed in tempered sequence

space in section 3. In section 4 and 5 an example and an iterative algorithm are

presented and discussed to understand the importance of our results. Finally, in

section 6 we give the conclusion of this article.

2. Preliminaries

The notion of MNC is given in the research of Banás and Lecko [5] as follows.

Definition 2.1. Let E be a Banach space, then we define AE is the class of all

nonempty bounded subsets of a Banach space E and BE is the set of all relatively

compact sets of a Banach space E. So, an MNC is a mapping β : AE → R+ satisfies

the following conditions for all Υ, Υ1, Υ2 ∈ AE.

(I) The family ker β = {Υ ∈ AE : β (Υ) = 0} ≠ ∅ and ker β ⊂ BE.

(II) Υ1 ⊂ Υ2 =⇒ β (Υ1) ≤ β (Υ2) .

(III) β
(
Ῡ
)
= β (Υ) , where Ῡ is the closure of a nonempty bounded subset Υ of

E.
(IV ) β (ConvΥ) = β (Υ) , where ConvΥ is the convex closure of a nonempty

bounded subset Υ of E.
(V ) β (kΥ1 + (1− k)Υ2) ≤ kβ (Υ1) + (1− k) β (Υ2) for k ∈ [0, 1] .

(V I) If Υn ∈ AE, Υn+1 ⊂ Υn, Υn = Ῡn, for n = 1, 2, 3, ... and lim
n→∞

β (Υn) = 0,

then Υ∞ =
∞⋂
n=1

Υn ̸= ∅ and precompact.

Remark 2.2. Since β(Υ∞) = β

(
∞⋂
n=1

Υn

)
≤ β(Υn), β(Υ∞) = 0, Υ∞ ∈ kerβ.

Definition 2.3. [5] Let Q be an element of metric space (Υ, d). Then the

Hausdorff MNC H(Υ) is the infimum of the set of all real ϵ > 0 such that Q covered
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by a finite number of balls of radii strictly less than δ, that is

H(Υ) = inf

{
δ > 0 : Q ⊂

n⋃
i=1

B̄(yi, ri), yi ∈ Q, ri < δ, (i = 1, 2, 3, ..., n), n ∈ N

}
,

where B̄(yi, ri) is the closed ball of radius ri centered at yi ∈ Q.

Now, we are concerned with certain sequence spaces which are associated with

the ℓp spaces. Let us define the set

P = {ρ = (ρk) : 0 < ρ1 ≤ ρk ≤ ρk+1, (k + 1)ρk ≥ ρk+1} .

In 1960, Sargent [34] introduced a space, where J(s) denotes the set of all

sequences that can be obtained by rearranging the elements of s. For ρ ∈ P , and

ρ0 = 0

h(ρ) =

{
s = (sn) : ∥s∥h(ρ) = sup

v∈J(s)

(
∞∑
n=1

|vn|Λρn

)
<∞

}
,

where Λρ = Λρn = ρn − ρn−1. Also, if ρk = 1 then h(ρ) = ℓ∞ and if ρk = k then

h(ρ) = ℓ1.

In 2017, Banás and Krajewska [6] give a new direction to an existence space by

introducing a fix non-increasing real sequence α=(αi)
∞
i=1 is known as a tempering

sequence. Assume hα(ρ) be the space of all real or complex sequences u=(ui)
∞
i=1

such that αu = (αmum) ∈ h(ρ), and hα(ρ) forms a Banach space with the norm

∥u∥hα(ρ) = ∥αu∥h(ρ) = sup
v∈J(u)

(
∞∑
n=1

αn|vn|Λρn

)
.

Now, consider G : hα(ρ) → h(ρ) is a mapping defined by

G(s) = G((sn)
∞
n=1) = (αnsn)

∞
n=1 = (αs),

where s = (sn)
∞
n=1 ∈ hα(ρ) and (αnsn)

∞
n=1 = αs ∈ h(ρ). For any a = (an)

∞
n=1 and

b = (bn)
∞
n=1 ∈ hα(ρ), we have

∥G(a)−G(b)∥h(ρ) = ∥(αnan)
∞
n=1 − (αnbn)

∞
n=1∥h(ρ)

= ∥αa− αb∥h(ρ)

= sup
v∈J(α(a−b))

(
∞∑
n=1

|vn|Λρn

)

= sup
w∈J(a−b)

(
∞∑
n=1

αn|wn|Λρn

)
= ∥a− b∥hα(ρ),

where for any sequence v in J(α(a − b)) can be obtained as the product of α and

a sequence w in J(a − b). Since condition ∥G(a) − G(b)∥h(ρ) = ∥a − b∥hα(ρ) holds.
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Hence, the spaces hα(ρ) and h(ρ) are isometric to each other. The Hausdorff MNC

in Banach spaces h(ρ) and hα(ρ) are as follows. The Hausdorff MNC Hh(ρ) for a

nonempty and bounded set B is determined by the formula (see[28])

Hh(ρ)(B) = lim
n→∞

[
sup
s∈B

(
sup

v∈J(s)

(
∞∑

m=n

|vm|Λρn

))]
. (9)

Since hα(ρ) and h(ρ) are isometric to each other, the Hausdorff MNC Hhα(ρ) for

the nonempty and bounded set B is defined by the formula

Hhα(ρ)(Bα) = lim
n→∞

[
sup
s∈Bα

(
sup

w∈J(s)

(
∞∑

m=n

αm|wm|Λρn

))]
. (10)

Let C(I, hα(ρ)) be collection of all continuous functions defined on the interval

I = [0, J ] for some J > 0, and have a value on the space hα(ρ) and the norm is

defined as

∥u∥C(I,hα(ρ)) = sup
q∈I

∥u(q)∥hα(ρ),

where u(q) = (u(q))∞j=1 ∈ hα(ρ). Now, we present a fixed point theorem along with

definitions that are used for establishing and proving our results.

Theorem 2.1. [2] A mapping G : Υ → Υ which is compact and continuous has

a fixed point, where Υ is a nonempty convex closed subset of a Banach space E.

Theorem 2.2. [13] A continuous mapping G : Υ → Υ satisfying

β (GD) ≤ k β(D),

for any set D of Υ, where k is constant, k ∈ [0, 1), and β is an MNC. Then the

mapping G has a fixed point in Υ. This theorem is known as DFPT.

Definition 2.4. [3] The fractional operator of order δ + n for the function

u ∈ C1[0,∞) having a non-singular kernel is defined as

(
Dδ+n

0,h,ku
)
(τ) =

(
1

1− δ

)(
h2 + k2

h

) τ∫
0

e
−hδ(τ−ν)

1−δ cos

(
kδ(τ − ν)

1− δ

)
u(n+1)(ν)dν, τ > 0,

(11)

where h > 0, k ≥ 0, 0 < δ < 1, n ∈ N∪ 0 and u ∈ C1[0,∞) are given. Similarly, we

define the fractional operator of order δ + n for the functions un ∈ C1[0,∞) having

a non-singular kernel as

(
Dδ+n

0,h,kun
)
(τ) =

(
1

1− δ

)(
h2 + k2

h

) τ∫
0

e
−hδ(τ−ν)

1−δ cos

(
kδ(τ − ν)

1− δ

)
u(n+1)
n (ν)dν, τ > 0,

(12)

where h > 0, k ≥ 0, 0 < δ < 1, n ∈ N∪{0} and un ∈ C1[0,∞) are given.
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Definition 2.5. [3] Let h > 0, k ≥ 0, 0 < δ < 1, and f ∈ C[0, T ]. The fractional

integral of order 0 < δ < 1 for a function f having a non-singular kernel is defined

as

(
Iδ
0,h,kf

)
(τ) =

h(1− δ)

h2 + k2
f(τ) + δ

 τ∫
0

f(ν)dν − k2

h2 + k2

τ∫
0

e
−hδ(τ−ν)

1−δ f(ν)dτ

 ,

where 0 < τ < T <∞ and
(
Iδ
0,h,kf

)
(0) = 0.

Similarly, we define a fractional integral operator of order 0 < δ < 1 for the

functions fn having a non-singular kernel is defined as

(
Iδ
0,h,kfn

)
(τ) =

h(1− δ)

h2 + k2
fn(τ, un(τ))

+ δ

 τ∫
0

fn(ν, un(ν))dν −
k2

h2 + k2

τ∫
0

e
−hδ(τ−ν)

1−δ fn(ν, un(ν))dν

 , (13)

where fn ∈ C1([0, T ]×R), un ∈ C1([0, T ]), 0 < τ < T <∞
with

(
Iδ
0,h,kfn

)
(0) = 0.

Proposition 2.3. The problem given by Eq. (8) is equivalent to the following

system of integral equations

un(τ) =
(
Iδ
0,h,kfn(., un(.))

)
(τ), 0 ≤ τ ≤ T, (14)

i.e., the problem of infinite system of Eq. (8) and Eq. (14) have the same solution.

Proof. Suppose un ∈ C1[0, T ] is the solution of Eq. (8), then we have

(
Dδ

0,h,kun
)′
(τ) = f ′

n(τ, un(τ)), 0 < τ < T. (15)
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By using Eq. (12), we obtain(
Dδ

0,h,kun
)′
(τ)

=

(
1

1− δ

)(
h2 + k2

h

)u′n(τ) +
τ∫

0

d

dτ

(
e

−hδ(τ−ν)
1−δ cos

(
kδ(τ − ν)

1− δ

))
u′n(ν)dν


=

(
1

1− δ

)(
h2 + k2

h

)
u′n(τ)−

(
1

1− δ

)(
hδ

1− δ

)(
h2 + k2

h

)
×

τ∫
0

e
−hδ(τ−ν)

1−δ cos

(
kδ(τ − ν)

1− δ

)
u′n(ν)dν −

(
1

1− δ

)(
kδ

1− δ

)(
h2 + k2

h

)
×

τ∫
0

e
−hδ(τ−ν)

1−δ sin

(
kδ(τ − ν)

1− δ

)
u′n(ν)dν

=

(
1

1− δ

)(
h2 + k2

h

)
u′n(τ)−

(
hδ

1− δ

)
fn(τ, un(τ))

−
(

1

1− δ

)(
kδ

1− δ

)(
h2 + k2

h

)
Υ(τ), (16)

where

Υ(τ) =

τ∫
0

e
−hδ(τ−ν)

1−δ sin

(
kδ(τ − ν)

1− δ

)
u′n(ν)dν. (17)

Differentiating with respect to τ of the Eq. (17), we have

Υ′(τ) =

τ∫
0

d

dτ

(
e

−hδ(τ−ν)
1−δ sin

(
kδ(τ − ν)

1− δ

))
u′n(ν)dν

=−
(

hδ

1− δ

) τ∫
0

e
−hδ(τ−ν)

1−δ sin

(
kδ(τ − ν)

1− δ

)
u′n(ν)dν

+

(
kδ

1− δ

) τ∫
0

e
−hδ(τ−ν)

1−δ cos

(
kδ(τ − ν)

1− δ

)
u′n(ν)dν

=−
(

hδ

1− δ

)
Υ(τ) +

(
hkδ

h2 + k2

)
fn(τ, un(τ)). (18)

Solving Eq. (18) by using Υ(0) = 0, we get

Υ(τ) =

(
hkδ

h2 + k2

) τ∫
0

e
−hδ(τ−ν)

1−δ fn(ν, un(ν))dν.
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Hence, from Eq. (16) we have(
Dδ

0,h,kun
)′
(τ) =

(
1

1− δ

)(
h2 + k2

h

)
u′n(τ)−

(
hδ

1− δ

)
fn(τ, un(τ))

−
(

kδ

1− δ

)2
τ∫

0

e
−hδ(τ−ν)

1−δ fn(ν, un(ν))dν. (19)

Now by using the Eq. (15) and Eq. (19) we have

u′n(τ) =
h(1− δ)

h2 + k2
f ′
n(τ, un(τ)) +

h2δ

h2 + k2
fn(τ, un(τ))

+

(
hk2δ2

(1− δ)(h2 + k2)

) τ∫
0

e
−hδ(τ−ν)

1−δ fn(ν, un(ν))dν.

Integrating above equality from ν = 0 to ν = τ and using un(τ)τ=0 = un(0) and

fn(0, un(0)) = 0, we obtain

un(τ)− un(0) =
h(1− δ)

h2 + k2
fn(τ, un(τ)) +

h2δ

h2 + k2

τ∫
0

fn(ν, un(ν))dν

+

(
hk2δ2

(1− δ)(h2 + k2)

) τ∫
0

σ∫
0

e
−hδ(σ−ν)

1−δ fn(ν, un(ν))dνdσ. (20)

To use the Fubini’s theorem, we have
τ∫

0

σ∫
0

e
−hδ(σ−ν)

1−δ fn(ν, un(ν))dνdσ

=

τ∫
0

fn(ν, un(ν))e
−hδτ
1−δ

( τ∫
ν

e
−hδσ
1−δ dσ

)
dν

=

(
1− δ

hδ

) τ∫
0

fn(ν, un(ν))dν −
(
1− δ

hδ

) τ∫
0

e
−hδ(τ−ν)

1−δ fn(ν, un(ν))dν. (21)

Hence, from Eq. (20) and Eq. (21), we have

un(τ) =
(
Iδ
0,h,kfn(., un(.))

)
(τ).

Since fn(0, un(0)) = 0 and un(τ)τ=0 = un(0) = 0, un is the solution of the Eq.

(14).

Assuming that un satisfies Eq. (14), it is obvious that un ∈ C1[0, T ]. Moreover,

since fn(0, un(0)) = 0, we have un(0) = 0. Also, an easy calculation show that(
Dδ

0,h,kun
)
(τ) = fn(τ, un(τ)) for 0 < τ < T . Hence, it can be deduced that un

possesses a solution to Eq. (8). □
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Now, we reach at a position to demonstrate our main result, i.e., the existence

of the solution of an infinite system of FDE (8) in the sequence space C(I, hα(ρ))

using the DFPT.

3. Existence of solution of Eq. (8) in sequence space C(I, hα(ρ))

To demonstrate the existence of solution for Eq. (8), and we introduce the

following assumptions:

(i) The functionsGn : I×C(I, hα(ρ)) → R (n ∈ N) and operatorG : C(I, hα(ρ)) →
C(I, hα(ρ)) is defined as

(τ, u(τ)) → Gu(τ) = (Gn(τ, u(τ)))
∞
n=1,

where

Gun(τ) =
h(1− δ)

h2 + k2
fn(τ, un(τ))

+ δ

 τ∫
0

fn(ν, un(ν))dν −
k2

h2 + k2

τ∫
0

e
−hδ(τ−ν)

1−δ fn(ν, un(ν))dν

 .

Besides that, the class ((Gu)(τ))τ∈I is equicontinuous at all points of C(I, h
α(ρ)).

(ii) The continuous functions fn : I × R → R (n ∈ N) satisfying
|fn(τ, un(τ))| ≤ ψn(τ)|un(τ)|, where ψn are continuous functions on I and

(αnψn(τ)) is equibounded sequence on I.

Write ψ = sup
n∈N,τ∈I

{ψn(τ)}, Mδ =
h(1−δ)
h2+k2

and Nδ =
k2δ

h2+k2
.

(iii) Assume that ψ(Mδ +NδT + δT ) < 1.

Theorem 3.1. If an infinite system of FDE (8) follows the assumptions (i)−(iii),

then Eq. (8) possesses at least one solution u(τ) = (un(τ))
∞
n=1 ∈ C(I, hα(ρ)) for

every τ ∈ I.

Proof. Suppose that J(u(τ)) is the set of sequences which are rearrangements

of u(τ) and assume that if v(τ) ∈ J(u(τ)), then
∞∑

m=1

αm|vm(τ)|Λsm ≤ L, where

L > 0, and u(τ) = (un(τ))
∞
n=1 ∈ hα(ρ) for every τ ∈ I = [0, T ] with T > 0.
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From Eq. (14), we have the following expression for any τ ∈ I = [0, T ]

∥u(τ)∥hα(ρ) =∥αu(τ)∥h(ρ)

= sup
v∈J(u(τ))

[ ∞∑
m=1

αm|vm(τ)|Λsm
]

= sup
v∈J(u(τ))

[ ∞∑
m=1

αm

(∣∣∣∣h(1− δ)

h2 + k2
fm(τ, vm(τ))

+ δ

τ∫
0

fm(ν, vm(ν))dν −
δk2

h2 + k2

τ∫
0

e
−hδ(τ−ν)

1−δ fm(ν, vm(ν))dν

∣∣∣∣)Λsm]

≤ sup
v∈J(u(τ))

∞∑
m=1

αm

∣∣∣∣h(1− δ)

h2 + k2
fm(τ, vm(τ))

∣∣∣∣Λsm
+ sup

v∈J(u(τ))
δ

∞∑
m=1

αm

∣∣∣∣ ∫ τ

0

fm(ν, vm(ν))dν

∣∣∣∣Λsm
+ sup

v∈J(u(τ))
δ

∞∑
m=1

αm

∣∣∣∣ k2

h2 + k2

τ∫
0

e
−hδ(τ−ν)

1−δ fm(ν, vm(ν))dν

∣∣∣∣Λsm
≤h(1− δ)

h2 + k2
sup

v∈J(u(τ))

∞∑
m=1

αm|fm(τ, vm(τ))|Λsm

+ δ sup
v∈J(u(τ))

∞∑
m=1

αm

∫ τ

0

|fm(ν, vm(ν))|dνΛsm

+ δ
k2

h2 + k2
sup

v∈J(u(τ))

∞∑
m=1

αm

τ∫
0

∣∣∣∣e−hδ(τ−ν)
1−δ fm(ν, vm(ν))

∣∣∣∣dνΛsm
≤Mδ sup

v∈J(u(τ))

∞∑
m=1

αm|ψm(τ)vm(τ)|Λsm

+ sup
v∈J(u(τ))

{
δ

∫ τ

0

( ∞∑
m=1

αm|ψm(ν)vm(ν)|Λsm
)
dν

+Nδ

∫ τ

0

( ∞∑
m=1

αm|ψm(ν)vm(ν)|Λsm
)
dν

}

≤Mδψ∥u(τ)∥hα(ρ) + (δψ +Nδψ)L

τ∫
0

dν

≤Mδψ∥u(τ)∥hα(ρ) + (δψ +Nδψ)LT,
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i.e.,

∥u(τ)∥hα(ρ) ≤
(δψ +Nδψ)LT

1−Mδψ
= θ(say).

Let B̄ = {u(τ) ∈ C(I, hα(ρ)) : ∥u∥C(I,hα(ρ)) ≤ θ}. Then B̄ is closed, convex and

bounded. Consider S = (Sn) be an operator on C(I, hα(ρ)) such that for any τ ∈ I

(Su)(τ) = {(Snu)(τ)}∞n=1 = {Gn(τ, u(τ))}∞n=1,

where, u(τ) = (un(τ))
∞
n=1 ∈ hα(ρ), and un(τ) ∈ C(I,R) by assumption (i). Using

assumption (i), we get, for all τ ∈ I

(Su)(τ) ∈ hα(ρ) and sup
v∈J(u(τ))

(
∞∑

m=1

αm|(Smu)(τ)|Λsm

)
≤ θ <∞,

with (Snu)(0) = 0. Since ∥(Su)(τ)∥hα(ρ) ≤ θ, therefore S : B̄ → B̄ is self mapping.

Hence, we can say that S is continuous operator on C(I, B̄) by assumption (i).

Now, we define the Hausdorff MNC on the space B̄ ⊂ C(I, hα(ρ)) as follows.

For any fixed τ ∈ I, we have

Hhα(ρ)(SB̄) = lim
n→∞

[
sup

u(τ)∈B̄

(
sup

v∈J(u(τ))

∑
m≥n

αm|vm(τ)|Λsm

)]

= lim
n→∞

[
sup

u(τ)∈B̄
sup

v∈J(u(τ))

{∑
m≥n

αm

∣∣∣∣h(1− δ)

h2 + k2
fm(τ, vm(τ))

+ δ

τ∫
0

fm(ν, vm(ν))dν − δ
k2

h2 + k2

τ∫
0

e
−hδ(τ−ν)

1−δ fm(ν, vm(ν))dν

∣∣∣∣Λsm}
]

≤Mδψ lim
n→∞

[
sup

u(τ)∈B̄

(
sup

v∈J(u(τ))

∑
m≥n

αn|vn(τ)|Λsn
)]

+ δψT lim
n→∞

[
sup

u(τ)∈B̄

(
sup

v∈J(u(τ))

∑
m≥n

αn|vn(τ)|Λsn
)]

+NδψT lim
n→∞

[
sup

u(τ)∈B̄

(
sup

v∈J(u(τ))

∑
m≥n

αn|vn(τ)|Λsn
)]

=

(
Mδψ + δψT +NδψT

)
Hhα(ρ)(B̄).

Hence, we have

Hhα(ρ)(SB̄) ≤ ψ

(
Mδ + δT +NδT

)
Hhα(ρ)(B̄).
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As ψ (Mδ + δT +NδT ) < 1 and S satisfies all the conditions of Theorem 2.2.

Hence, S has a fixed point in B̄. Therefore an infinite system of FDE (8) has a

solution in C(I, hα(ρ)). □

Now, we give an example of an infinite system of FDE of the type (8) to validate

our results.

4. Example

Example 4.1. Consider an infinite system of Caputo-Fabrizio FDE(
D

1
5
0,1,0un

)
(τ) =

∑
m≥n

sin(um(τ))

10m2n2eτ
, τ ∈ [0, 1], un ∈ C(I,R), n ∈ N (22)

with un(0) = 0.

Here, fn(τ, un(τ)) =
∑
m≥n

sin(um(τ))
10m2n2eτ

, τ ∈ [0, 1] = I and for every n ∈ N. But

un(τ) ∈ C(I,R), then for every n ∈ N, fn’s are continuous functions and for every

n ∈ N, we have ∣∣∣∣fn(τ, un(τ))∣∣∣∣ = ∣∣∣∣∑
m≥n

sin(um(τ))

10m2n2eτ

∣∣∣∣ ≤ ∑
m≥n

|um(τ)|
10m2n2

,

where ψn(τ) =

∑
m≥n

1
m2

10n2 . Let αn = 1
n3 and sn = n. Then, we have ψ = π2

60
, Mδ = 4

5
,

and Nδ = 0 and

ψ (Mδ + δT +NδT ) =
π2

60

(
4

5
+

1

5

)
= 0.164 < 1.

Therefore, Theorem 3.1 figure out that an infinite system of FDE (22) possesses

a solution in the sequence space C(I, hα(ρ)).

5. Homotopy perturbation and ADM to solve Example (4.1)

In this section, we approximated the following infinite system of an integral

equation, which is equivalent to the infinite system of differential Eq. (22)

un(τ) =
4

5

∑
m≥n

sin(um(τ))

10m2n2eτ
+

1

5

τ∫
0

∑
m≥n

sin(um(ν))

10m2n2eν
dν, (23)

by a coupled semi-analytical method. This method is a combination of the mHPM

and ADM. For more details about these methods and their application, one can see

the references [1, 7, 16, 32]. In this article, we generalize the mHPM to infinite

functions and use the ADM for the simplification of nonlinear terms. In order to
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do so, we consider the nonlinear problem with boundary conditions of the following

form

A(u1(τ), u2(τ), ..., un(τ), ...)− f(τ, n) = 0 (τ ∈ Ω, n ∈ N), (24)

B

(
ui,

∂ui
∂r

)
= 0, (r ∈ Γ),

where A is the general nonlinear operator and B is the boundary operator and f

is an analytic function. By observing the work of [19] and [30], we convert the

operator A into nonlinear operators N1 and N2 (sometimes N1 and N2 can be linear

operators) and divide f into f1 and f2. Therefore, we can write Eq. (24) as

N1(u1(τ), u2(τ), ..., un(τ), ...)− f1(τ, n) +N1(u1(τ), u2(τ), ..., un(τ), ...)− f2(τ, n) = 0.

Applying mHPM for an infinite functions, we have
H(v1(τ), v2(τ), ..., vn(τ), .., p) = N1(v1(τ), v2(τ), ..., vn(τ), ...)− f1(τ, n)

+p(N2(v1(τ), v2(τ), ..., vn(τ), ...))− f2(τ, n) = 0

(p ∈ [0, 1]),

(25)

where p is a perturbation parameter and vi are the approximation of ui for i ∈ N.
Variating perturbation parameter p from p = 0 to p = 1, we have

N1(v1(τ), v2(τ), ..., vn(τ), ...) = f1(τ, n),

...

A(v1(τ), v2(τ), ..., vn(τ), ...)− f(τ, n) = 0.

Therefore, we get the solution of Eq. (24) by putting p = 1 in the Eq. (25) and

let the solution is in series form
un(τ) ≈ vn(τ) =

∞∑
j=0

pjvj,n(τ)

un(τ) = lim
p→1

vn(τ).

(26)

To solve the nonlinear infinite system of integral Eq. (23), we select the operators

N1 and N2 and f as
N1(u1(τ), u2(τ), ..., un(τ), ...) = un(τ),

N2(u1(τ), u2(τ), ..., un(τ), ...) = −4
5

∑
m≥n

sin(um(τ))
10m2n2eτ

− 1
5

τ∫
0

∑
m≥n

sin(um(ν))
10m2n2eν

dν,

f(t, n) = 0.

(27)



SOLUTION OF AN INFINITE SYSTEM OF FRACTIONAL DIFFERENTIAL EQUATIONS 85

Putting the values of Eq. (27) and Eq. (26) into the Eq. (25), we have

p

−4

5

∑
m≥n

sin(um(τ))

10m2n2eτ
− 1

5

τ∫
0

∑
m≥n

sin(um(ν))

10m2n2eν
dν − f2(τ, n)


+

∞∑
j=0

pjvj,n(τ)− f1(τ, n) = 0. (28)

To approximate the nonlinear term in Eq. (28), we apply the ADM of the form,

∑
m≥n

sin(um(τ))

10m2n2
=

∞∑
j=0

pjAj,n(τ), (29)

where the Adomian polynomial is

Ak,n(τ) =
1

k!

 dk

dpk

∑
m≥n

sin

(
∞∑
j=0

pjvj,n(τ)

)
10m2n2


p=0

.

Using Eq. (29) into the Eq. (28), we get

p

−4

5
e−τ

∞∑
j=0

pjAj,n(τ)−
1

5

τ∫
0

e−ν

∞∑
j=0

pjAj,n(ν)dν − f2(τ, n)


+

∞∑
j=0

pjvj,n(τ)− f1(τ, n) = 0. (30)

Comparing the coefficient of pth-powers of the Eq. (30), we have

p0 : (v0,n(τ)− f1(τ, n)) ,

p1 :

v1,n(τ)− 4

5
e−τA0,n(τ)−

1

5

τ∫
0

e−νA0,n(ν)dν − f2(τ, n)

 ,

pk :

vk,n(τ)− 4

5
e−τAk−1,n(τ)−

1

5

τ∫
0

e−νAk−1,n(ν)dν

 , where (k ≥ 2).

Since, Eq. (30) is equal to zero, the coefficients of pth powers are equal to zero.

Thus, we obtain an iterative algorithm to solve the Eq. (23) as follows.
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Algorithm

v0,n(τ) = f1(τ, n),

v1,n(τ) = f2(τ, n) +
4

5
e−τA0,n(τ) +

1

5

τ∫
0

e−νA0,n(ν)dν,

vk,n(τ) =
4

5
e−τAk−1,n(τ) +

1

5

τ∫
0

e−νAk−1,n(ν)dν, where (k ≥ 2).

For test purposes, we evaluate some terms of the sequence {u1(τ), u2(τ), ...} by

the above algorithm, where the Adomian polynomial is

A0,n(τ) =
∑
m≥n

sin (v0,n(τ))

10m2n2
.

Since f(τ, n) = 0 in Eq. (23), we choose f1(τ, n) = −f2(τ, n) = π
2
and set

v0,n(τ) = f1(τ, n) =
π
2
= −f2(τ, n). Therefore, we have v0,n(τ) =

π
2
,

v1,n(τ) = −π
2
+ 4

5
e−τA0,n(τ) +

1
5

τ∫
0

e−νA0,n(ν)dν,
(31)

and for n = 1 we get{
v0,1(τ) =

π
2
,

v1,1(τ) = −π
2
+ π2

75
e−τ + π2

300
(1− e−τ ).

To approximate the solution, we only consider first two terms of the series Eq.

(26), therefore we have

u1(τ) = v0,1(τ) + v1,1(τ) = 0.0329 + 0.0987e−τ .

(32)

Similarly, we get some terms of the above series by using MATLAB (R2023a)

version as follows

u2(τ) = 0.0082 + 0.0247e−τ ,

u3(τ) = 8.7763e−04 + 0.0026e−τ , (33)

u4(τ) = 3.5478e−04 + 0.0011e−τ ,

u5(τ) = 2.2000e−04 + 6.6000e−04e−τ .

We find out some terms of the sequence {un(τ)}, in Eq. (32) and Eq. (33) for

n = 1, 2, 3, 4, 5. Moreover tracing them in the Figures 1 and 2, it shows that for

any 0 ≤ τ ≤ 1, u1(τ) < 1.4 × 10−1, u2(τ) < 1.3 × 10−2, u3(τ) < 3.6 × 10−3,..,

u5(τ) < 9.0 × 10−4. Thus, we conclude that for any 0 ≤ τ ≤ 1 and n large,
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Figure 1. The first and second terms of the sequence.

Figure 2. The third and fifth terms of the sequence.

un(τ) → 0. Figure 3 illustrated the better understanding of the convergence of the

sequence {un(τ)}.

6. Conclusion

In this article, we find an infinite system of FDE involving a generalized Caputo-

Fabrizio fractional derivative with a kernel function having trigonometric and expo-

nential functions. Using the DFPT, we established the existence of the solution of

the given equation in the tempered sequence space C(I, hα(ρ)). Moreover, we pro-

vide an example and an algorithm based on mHPM and ADM methods to validate

our obtained results and approximate the solution with high accuracy.
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Figure 3. Convergence of un→ 0.
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[4] A. Atangana and J. F. Gómez-Aguilar, Numerical approximation of Riemann-Liouville def-

inition of fractional derivative from Riemann-Liouville to Atangana-Baleanu, Numer. Meth.

Partial Differ. Equ., 34 (2018), 1502-1523.

[5] J. Banás and K. Goebel, Measures of Noncompactness in Banach Spaces, Marcel Dekker New

York, 1980.

[6] J. Banás and M. Krajewska, Existence of solutions for infinite systems of differential equations

in spaces of tempered sequences, Electron. J. Diff. Equ., 60 (2017), 1-28.

[7] J. Biazar and M. Eslami, Modified homotopy perturbation method for solving systems of

Volterra integral equations of the second kind, J. King Saud University-Sci., 1 (2011), 35-39.



SOLUTION OF AN INFINITE SYSTEM OF FRACTIONAL DIFFERENTIAL EQUATIONS 89

[8] J. Biazar, M. Eslami, and H. Aminikhah, Application of homotopy perturbation method for

system of Volterra integral equations of the first kind, Chaos Solitons Fractals, 5 (2009), 3020-

3026.

[9] E. Capelas de Oliveira and J. A. Tenreiro Machado, A review of definitions for fractional

derivatives and integral, Math. Probl. Eng., 2014 (2014), 1-6.

[10] M. Caputo, Linear models of dissipation whose Q is almost frequency independent-II, Geophys.

J. Int., 13 (1967), 529-539.
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