[1] C. S. Bagewadi and Venkatesha, Some curvature tensor on a Kenmotsu manifold, Tensor, 68 (2007), 140-147.

[2] C. S. Bagewadi and Venkatesha, On pseudo projective ϕ-recurrent Kenmotsu manifolds, Soochow J. Math., 32 (2006), 1-7.

[3] A. Bejancu and N. Papaghuic, Semi-invariant submanifolds of a Sasakian manifold, An Sti. Univ. AL I CUZA Iasi, 27 (1981), 163-170.

[4] D. E. Blair, The theory of quasi-Sasakian structure, J. Differ. Geom., 1 (1967), 331-345.

[5] D. E. Blair, Contact Manifolds in Riemannian Geometry, Lecture Notes in Mathematics, No 509. Springer, 1976.

[6] U. C. De and G. Pathak, On 3-dimensional Kenmotsu manifolds, Ind. J. Pure Appl. Math., 35 (2004), 159-165.

[7] U. C. De and P. Majhi, On invariant submanifolds of Kenmotsu manifolds, J. Geometry, 106 (2015), 109-122.

[8] J. Deprez, Semi-parallel surfaces in the Euclidean space, J. Geometry, 25 (1985), 192-200.

[9] Z. Guojing and W. Jianguo, Invariant sub-manifolds and modes of nonlinear autonomous systems, Appl. Math. Mech., 19(7) (1998), 687-693.

[10] S. K. Hui and J. Roy, Invariant and anti-invariant submanifolds of special quasi-Sasakian manifolds, J. Geometry, 109 (2018), 1-16.

[11] K. Kenmotsu, A class of almost contact Riemannian manifolds, Tohoku Math. J., 24 (1972), 93-103.

[12] J.H. Kwon and B.H. Kim, A new class of almost contact Riemannian manifolds, Commun. Korean Math. Soc., 8 (1993), 455-465.

[13] V. Mangione, Totally geodesic submanifolds of a Kenmotsu space form, Math. Rep., 57(4) (2005), 315-324.

[14] D. Nirmala, M. S. Siddesha, and C. S. Bagewadi, On invariant submanifolds of Lorentzian β-Kenmotsu manifold, Asian J. Math. Comput. Res., 19(4) (2017), 203-213.

[15] Z. Olszak, On three-dimensional conformally flat quasi-sasakian manifolds, Period. Math. Hung., 33 (1996), 105-113.

[16] C. Ozgur, On weakly symmetric Kenmotsu manifolds, Differ. Geom. Dyn. Syt., 8 (2006), 204-209.

[17] C. Ozgur, On generalized recurrent Kenmotsu manifolds, World Appl. Sci. J. 2 (2007), 29-33.

[18] A. A. Shaikh, Y. Matsuyama, and S. K. Hui, On invariant submanifolds of (LCS)n-manifolds, J. Egypt. Math. Soc., 24(2) (2016), 263-269.

[19] S.W. Shaw and C. Pierre, Normal modes for nonlinear vibratory systems, J. Sound Vib., 164(1) (1993), 85-124.

[20] S. W. Shaw and C. Pierre, Normal modes of vibration for nonlinear continuous systems, J. Sound Vib., 169(3) (1994), 319-347.

[21] M. S. Siddesha and C. S. Bagewadi, Submanifold of a (k, μ)-Contact manifold, CUBO A Mat. J., 18(1) (2016), 59-68.

[22] M. S. Siddesha and C. S. Bagewadi, Totally geodesic submanifolds of (k, μ)-contact manifolds, ISOR J. Math., 12 (2016), 1-6.

[23] M. S. Siddesha and C. S. Bagewadi, On some classes of invariant submanifolds (k, μ)-contact manifold, J. of Inf. Mat. Sci., 9(1) (2017), 13-26.

[24] M. S. Siddesha and C. S. Bagewadi, Invariant submanifolds of (k, μ)-contact manifolds admitting quarter symmetric metric connection, Int. J. Math. Trends Tech., 34(2) (2016), 48-53.

[25] M.S. Siddesha and C.S. Bagewadi, Submanifolds of a conformal (k, μ)-contact manifold, BSG Proceedings, 28 (2021), 88-97.

[26] P. Somashekhara, M. S. Siddesha, C. S. Bagewadi, and M.M. Praveena, On invariant submanifolds of SQ-Sasakian manifolds, J. Pharm. Negative Results, 14(3) (2023), 1151-1158.

[27] S. Sular and C. Ozgur, On some submanifolds of Kenmotsu manifolds, Chaos Solitons Fractals, 42(4) (2009), 1990-1995.

[28] L. Verstraelen, Comments on pseudosymmetry in the sense of Ryszard Deszcz In: Geometry and Topology of submanifolds, World Sci. Pub. River Edge, 6 (1994), 199-209.

[29] A. Yildiz and C. Murathan, Invariant submanifolds of Sasakian space forms, J. Geometry, 95 (2009), 135-150.