Document Type : Original Article


Laboratoire de Mathematiques et Applications, UFR Mathematiques et Informatique, Uniiversite Felix Houphouet Boigny, Abidjan, Cote d' I voire


 Let $ 1 \leq p\leq \alpha \leq  q \leq \infty$.  The  Fofana's spaces $\left(L^{p},\ell^{q}\right)^{\alpha}(\mathbb{R}^d)$  were introduced in 1988 by Fofana on the basis of Wiener amalgam spaces and their predual spaces $\mathcal{H}(p',q',\alpha')(\mathbb{R}^d)$ have been described by Feichtinger and Feuto in 2019. Recently, in 2023, Yang and Zhou generalized these spaces by replacing the constant exponent $p$ with the variable exponent  $p(\cdot)$ and defining so the variable exponent Fofana's spaces $\left(L^{p(\cdot)},\ell^{q}\right)^{\alpha}(\mathbb{R}^d)$ and their preduals $\mathcal{H}(p'(\cdot),q',\alpha')(\mathbb{R}^d)$.  The purpose of this paper is to investigate the boundedness of classical operators such as Riesz potentials operators, maximal operators, Calderon-Zygmund operators and some generalized sublinear operators in both  $\left(L^{p(\cdot)},\ell^{q}\right)^{\alpha}(\mathbb{R}^d)$ and $\mathcal{H}(p'(\cdot),q',\alpha')(\mathbb{R}^d)$. In order to do this, we prove some properties of these spaces.  Our results extend and/or improve those of classical Fofana's spaces and their preduals.


[1] J. Alvarez and M. Guzman-Partida, The T(1) theorem revisited, Surv. Math. Appl., 13 (2018), 41-94.
[2] I. Aydin, On variable exponent amalgam spaces, An. St. Univ. Ovidius Constanta, 20(3) (2012), 5-20.
[3] I. Aydin, On vector-valued classical and variable exponent amalgam spaces, Commun. Fac. Sci. Univ. Ank. Series A1, 66(2) (2017), 100-114.
[4] I. Aydin and A. Gurkanli, Weighted variable exponent amalgam spaces W(Lp(), ℓqω), Glas. Mat., 47(67) (2012), 165-174.
[5] I. Aydin and C. Unal, Birkhoff’s Ergodic theorem for weighted variable exponent amalgam spaces, Appl. Appl. Math.: Int. J., 4(3) (2019), 1-10.
[6] C. Bennett and C. Sharpley, Interpolation of Operators, Academic Press, New York, 1988.
[7] S. Coulibaly and I. Fofana, On Lebesgue integrability of Fourier transforms in amalgam spaces, J. Fourier Anal. Appl., 25 (2019), 184-209.
[8] D. Cruz-Uribe and A. Fiorenza, Variable Lebesgue Spaces, Applied and Numerical Harmonic Analysis, Springer Basel, 2013.
[9] D. Cruz-Uribe, A. Fiorenza, and C. J. Neugebauer, The maximal function on variable Lp spaces, Ann. Acad. Sci. Fenn. Math., 28 (2003), 223-238.
[10] N. Diarra and I. Fofana, On preduals and K¨othe duals of some subspaces of Morrey spaces, J. Math. Anal. Appl., 496(2) (2021), 124842.
[11] N. Diarra and I. Fofana, Characterization of some closed linear subspaces of Morrey spaces and approximation, Adv. Pure Appl. Math., 14 (2023), 41-72.
[12] L. Diening, P. Harjulehto, P. Hasto, and M. Ruzicka, Lebesgue and Sobolev Spaces with Variable Exponents, Springer, 2011.
[13] M. Dosso, I. Fofana, and M. Sanogo, On some subspaces of Morrey-Sobolev spaces and boundedness of Riesz integrals, Ann. Pol. Math., 108 (2013), 133-153.
[14] X. Fan and D. Zhao, On the spaces Lp(x)(Ω) and Wm,p(x)(Ω), J. Math. Anal. Appl., 263(2) (2001), 424-446.
[15] H. G. Feichtinger and J. Feuto, Pre-dual of Fofana’s spaces, Mathematics, 7(6) (2019), 528.
[16] J. Feuto, Norm inequalities in some subspaces of Morrey space, Ann. Math. Blaise Pascal, 21(2) (2014), 21-37.
[17] I. Fofana, Etude d’une classe d’espaces de fonctions contenant les espaces de Lorentz, Afr. Mat. 1(2) (1988), 29-50.
[18] I. Fofana, Espace de Fonctions a Moyenne Fractionnaire Integrable, Th`ese Docteur d’etat
es-sciences, numero d’ordre 224, Universite de Cocody, Abidjan R.C.I, 1995.
[19] I. Fofana, Espace (Lq, lp)α(Rd) et continuite de l’operateur maximal fractionnaire de Hardy-Littlewood, Afr. Mat., 12(3) (2001), 23-37.
[20] J. Fournier and J. Stewart, Amalgams of Lp and Lq, Bull. Amer. Math. Soc., 13 (1985), 1–21.
[21] A. Gurkanli and I. Aydin, On the weighted variable exponent amalgam space W(Lp(), lmq), Acta Math. Sci. B 34(4) (2014), 1098-1110.
[22] F. Holland, Harmonic Analysis on amalgams of Lp and lq, J. Lond. Math. Soc. 10 (1975), 295-305.
[23] M. Izuki, Boundedness of sublinear operators on Herz spaces with variable exponent and application to wavelet characterization, Anal. Math., 36 (2010), 33-50.
[24] O. Kovacik and J. Rakosnik, On spaces Lp(x) and Wk,p(x), Czech. Math. J., 41 (116), (1991), 592-618.
[25] O. Kulak and I. Aydin, Inverse continuous Wavelet transform in weighted variable exponent amalgam spaces, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 69(2) (2020), 1171-1183.
[26] A. Lerner, Weighted norm inequalities for the Local sharp maximal function, J. Fourier Anal. Appl., 10(5) (2004), 465-474.
[27] A. Lerner, On weighted estimates of non-increasing rearrangements, East J. Approx., 4 (1998), 277-290.
[28] A. Meskhi and M. A. Zaighum, On the boundedness of maximal and potential operators in variable exponent amalgam spaces, J. Math. Inequal., 8(1) (2014), 123-152.
[29] C. Morrey, On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc., 43 (1938), 126-166.
[30] F. Soria and G. Weiss, A remark on singular integrals and power weights, Indiana Univ. Math. J., 43(1), (1994), 187-204.
[31] N. Wiener, On the representation of functions by trigonometrical integrals, Math. Z., 24 (1926), 575-616.
[32] K. Yabuta, Generalizations of Calderon-Zygmund operators, Studia Math., 82(1) (1985), 17-31.
[33] F. Yang and J. Zhou, Variable Fofana’s spaces and their pre-dual, arxiv:2301.07595v1 [math.FA] 18 Jan (2023).
[34] H. Zhang and J. Zhou, Mixed-norm amalgam spaces and their predual, Symmetry, 14(1) (2022), 74.