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Boundedness of some operators on variable

exponent Fofana’s spaces and their preduals

Nouffou Diarra

Abstract. Let 1 ≤ p ≤ α ≤ q ≤ ∞. The Fofana’s spaces (Lp, ℓq)
α
(Rd) were

introduced in 1988 by Fofana on the basis of Wiener amalgam spaces and their

predual spaces H(p′, q′, α′)(Rd) have been described by Feichtinger and Feuto in

2019. Recently, in 2023, Yang and Zhou generalized these spaces by replacing the

constant exponent p with the variable exponent p(·) and defining so the variable

exponent Fofana’s spaces
(
Lp(·), ℓq

)α
(Rd) and their preduals H(p′(·), q′, α′)(Rd).

The purpose of this paper is to investigate the boundedness of classical opera-

tors such as Riesz potentials operators, maximal operators, Calderon-Zygmund

operators and some generalized sublinear operators in both
(
Lp(·), ℓq

)α
(Rd) and

H(p′(·), q′, α′)(Rd). In order to do this, we prove some properties of these spaces.

Our results extend and/or improve those of classical Fofana’s spaces and their

preduals.

1. Introduction

The aim of this paper is to investigate the boundedness of some classical opera-

tors on Fofana’s spaces with variable exponent and their preduals.

A variable exponent on Rd is a measurable function p from Rd to [1,∞). In order

to distinguish between variable and constant exponents, we shall always denote vari-

able exponent by p(·). In the last decades, function spaces with variable exponents

have been intensely studied. Examples of such spaces include the variable exponent

Lebesgue spaces Lp(·)(Rd) which first appeared in literature in 1931 with an article

written by Orlicz, but the major study of these spaces was initiated by Kovacik and

Rakosnik [24] in 1991. Let us notice that, variable exponent Lebesgue spaces have
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many properties in common with classical Lebesgue spaces (see [8, 9, 14] and the

references therein). In 2012, Aydin and Gürkanli [4] extended the theory of variable

exponent Lebesgue spaces via introducing amalgam spaces with variable exponent(
Lp(·), ℓq

)
(Rd). We refer to [2, 3, 4, 5, 21, 25, 28] and the references therein for a

historical background of variable exponent amalgam spaces.

We present now a motivation and the importance for the study of Fofana’s spaces.

For 1 ≤ p, q ≤ ∞, the amalgam space (Lp, ℓq) (Rd) is defined as the set of complex

values functions f on Rd, which are locally in the classical Lebesgue space Lp(Rd)

and such that the sequence {∥fχIk∥p}k∈Zd belongs to ℓq(Zd), where ∥·∥p is the usual
Lebesgue norm on Lp(Rd), Ik = k+[0, 1)d and χIk denotes its characteristic function.

Amalgam spaces have been introduced by N. Wiener [31] since 1926, however their

systematic study began with the work of F. Holland [22] in 1975. Since then, they

have been widely studied (see [20] and the references therein). It is well know that

the classical Lebesgue space Lp(Rd) coincides with the amalgam space (Lp, ℓp) (Rd)

while it is a proper subspace of (Lp, ℓq) (Rd) when p < q. There are some useful prop-

erties of Lebesgue spaces which are not fulfilled in amalgam spaces. For instance,

for 0 < ρ, α < ∞, the dilation operator St
(α)
ρ : f 7→ ρ−

d
αf(ρ−1·) is not isometric in

proper amalgam spaces, contrary to Lebesgue spaces. In order to compensate for

this shortfall, in 1988, I. Fofana [17] introduced the functions spaces (Lp, ℓq)α(Rd)

(1 ≤ p ≤ α ≤ q ≤ ∞) which consist of functions f ∈ (Lp, ℓq) (Rd) satisfying

sup
ρ>0

∥∥∥{∥∥(St(α)ρ f
)
χIk

∥∥
p

}
k∈Zd

∥∥∥
ℓq

< ∞ and named them ”integrable fractional mean

function spaces”. Nowadays, there is an increasing interest in the study of these

spaces and they are called Fofana’s spaces by many authors. In 2019, Feichtinger

and Feuto [15] introduced the predual spaces H(p′, q′, α′)(Rd) of these spaces, where

for 1 ≤ s ≤ ∞ , s′ denotes the conjugate exponent of s, that is 1/s′ = 1− 1/s. Let

us point out that, Fofana’s spaces form a chain of Banach spaces beginning with the

classical Lebesgue space Lα(Rd) = (Lp, ℓα)α(Rd) and ending by the classical Morrey

spaceMα
p (Rd) = (Lp, ℓ∞)α(Rd) (see [18] for more precision). Actually, we recall that

the concept of Morrey spaces was introduced in 1938 by C. Morrey [29] in order to

study regularity problems arising in calculus of variations. Many results in Fourier

analysis, well-known and widely used in Lebesgue, Morrey or amalgam spaces, have

been obtained in the framework of Fofana’s spaces (see [7, 10, 11, 13, 15, 16, 19]

and the references therein).

Recently, in 2023, Yang and Zhou [33] introduced the variable exponent Fofana’s

spaces (Lp(·), ℓq)α(Rd) and described their predual spaces H(p′(·), q′, α′)(Rd). In fact,

they showed some basic properties of these spaces and proved the boundedness of

Riesz potentials operators and their commutators on (Lp(·), ℓq)α(Rd).

The main purpose of this paper is to establish the boundedness of classical

operators such as Riesz potentials operators, maximal operators, Calderón-Zygmund

operators and also some generalized sublinear operators on both (Lp(·), ℓq)α(Rd) and
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H(p′(·), q′, α′)(Rd). In order to do this, we first prove some complementary properties

of these spaces. We note that some of our results extend and/or improve those of

the classical Fofana’s spaces (Lp, ℓq)α(Rd) and their preduals H(p′, q′, α′)(Rd), while

others are new results.

The paper contains seven sections. In Section 2 we summarize basic results

on functions spaces with variable exponent. Section 3 is devoted to prove some

complementary results on (Lp(·), ℓq)α(Rd) and H(p′(·), q′, α′)(Rd). Sections 4, 5, 6

and 7 deal with the boundedness of Riesz potential operators, maximal operators,

Calderón-Zygmund operators and some generalized sublinear operators, respectively.

Throughout the remainder of this paper we shall use the following notations.

Let p(·) be a variable exponent on Rd.

• The conjuguate exponent p′(·) of p(·) is defined by the formula 1
p′(·) = 1− 1

p(·) with

the convention 1
∞ = 0.

• P(Rd) denotes the set of all variable exponents p(·) on Rd such that 1 < p− ≤
p(·) ≤ p+ < ∞, where

p− = ess inf
x∈Rd

p(x) , p+ = ess sup
x∈Rd

p(x).

• P log(Rd) is the set of all elements p(·) of P(Rd) satisfying the following two con-

ditions :

(i) p(·) is locally log-Hölder continuous : there exists a constant C0 such that :

|p(x)− p(y)| ≤ C0

−log(|x− y|)
, x, y ∈ Rd , |x− y| ≤ 1

2
(1)

(ii) p(·) is log-Hölder continuous at infinity : there exists a constant C∞ such

that :

|p(x)− p(y)| ≤ C∞

log(e+ |x|)
, x, y ∈ Rd , |y| > |x|. (2)

The letter C is used for non-negative constants independent of the relevant vari-

ables that may change from one occurrence to another. We propose the following

abbreviation A ≲ B for the inequalities A ≤ CB, where C is a positive constant

independent of the main parameters. |E| and χE stand for the Lebesgue measure

and the characteristic function, respectively, of any subset E of Rd.

2. Basic facts about variable exponent spaces

We recall some fundamental definitions and properties of some functions spaces

with variable exponent.

2.1. Variable exponent Lebesgue spaces. Let p(·) be a variable exponent

on Rd. The variable exponent Lebesgue spaces Lp(·) := Lp(·)(Rd) consist of all
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measurable functions f such that for some λ > 0,∫
Rd

(
|f(x)|
λ

)p(x)

dx < ∞.

The space Lp(·) becomes a Banach space when equipped with the Luxemburg

norm

∥f∥p(·) = inf

{
λ > 0 :

∫
Rd

(
|f(x)|
λ

)p(x)

dx ≤ 1

}
.

If p(·) = p is a constant function then ∥ · ∥p(·) coincides with the usual Lebesgue

norm ∥ · ∥p and so Lp(·) is equal to Lp.

The spaces L
p(·)
loc := L

p(·)
loc (Rd) are defined by

L
p(·)
loc =

{
f : fχK ∈ Lp(·), for all compact subset K of Rd

}
.

Variable exponent Lebesgue spaces have many properties in common with the

classical Lebesgue spaces. For instance, we have the following results.

Proposition 2.1. ([8]) Let p(·), q(·) ∈ P(Rd) and E a subset of Rd such that

|E| < ∞.

1) If f ∈ Lp(·) and g ∈ Lp′(·) then fg ∈ L1 and∫
Rd

|f(x)g(x)| dx ≤ (1 + 1/p− − 1/p+) ∥f∥p(·) ∥g∥p′(·). (3)

2) If p(·) ≤ q(·) then Lq(·)(E) ⊆ Lp(·)(E) and

∥f∥p(·) ≤ (1 + |E|) ∥f∥q(·), f ∈ Lq(·)(E). (4)

Proposition 2.2. [23] Assume that p(·) ∈ P log(Rd) and B is a ball in Rd. Then

there exists a constant C > 0 such that

∥χB∥p(·)∥χB∥p′(·) ≤ C|B|. (5)

2.2. Variable exponent amalgam spaces. Let p(·) be a variable exponent

on Rd, f ∈ L
p(·)
loc and 1 ≤ q ≤ ∞. we set

∥f∥p(·),q =
∥∥∥{∥fχQk

∥p(·)
}
k∈Zd

∥∥∥
ℓq
=


(∑

k∈Zd

∥fχQk
∥qp(·)

) 1
q

if q < ∞

sup
k∈Zd

∥fχQk
∥p(·) if q = ∞,

(6)

where

Qk =
d∏

j=1

[kj, kj + 1) , k = (k1, k2, ..., kd) ∈ Zd.
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Definition 2.1. Let p(·) be a variable exponent on Rd and 1 ≤ q ≤ ∞. The

variable exponent amalgam spaces
(
Lp(·), ℓq

)
are defined by

(Lp(·), ℓq) := (Lp(·), ℓq)(Rd) =
{
f ∈ L

p(·)
loc / ∥f∥p(·),q < ∞

}
.

The following results are well known.

Proposition 2.3. ([5, 28, 33]) Let p(·) be a variable exponent on Rd and 1 ≤
q ≤ ∞.

1)
(
Lp(·), ℓq

)
is a linear subspace of L

p(·)
loc and, when endowed with ∥.∥p(·),q , a Banach

space.

2) If f ∈
(
Lp(·), ℓq

)
and g ∈

(
Lp′(·), ℓq

′)
then fg ∈ L1 and∫

Rd

|f(x)g(x)| dx ≲ ∥f∥p(·),q ∥g∥p′(·),q′ . (7)

3) If p(·) ∈ P(Rd) and 1 ≤ q < ∞ then the topological dual of
(
Lp(·), ℓq

)
is(

Lp′(·), ℓq
′)
.

4) If 1 ≤ p(·), q < ∞ then the set Cc := Cc(Rd) of all continuous and compactly

supported functions on Rd is a dense subspace of
(
Lp(·), ℓq

)
.

2.3. Variable exponent Fofana’s spaces and their preduals. Let 0 < α <

∞ and 0 < ρ < ∞. For any measurable function f , the dilation operator St
(α)
ρ is

defined by

St(α)ρ f = ρ−
d
αf
(
ρ−1.

)
. (8)

It is easy to see that
{
St

(α)
ρ : 0 < ρ < ∞

}
is a commutative group of operators

on L
p(·)
loc , isomorphic to the multiplicative group (0,∞); that is

for any real number ρ > 0, St
(α)
ρ maps L

p(·)
loc into itself

St
(α)
1 f = f, f ∈ L

p(·)
loc

St
(α)
ρ1 ◦ St(α)ρ2 = St

(α)
ρ1ρ2 = St

(α)
ρ2 ◦ St(α)ρ1 , 0 < ρ1, ρ2 < ∞.

Definition 2.2. Let p(·) ∈ P(Rd) and 1 ≤ α, q ≤ ∞. The variable exponent

Fofana’s spaces
(
Lp(·), ℓq

)α
are defined by(

Lp(·), ℓq
)α

:=
(
Lp(·), ℓq

)α
(Rd) =

{
f ∈ L

p(·)
loc / ∥f∥p(·),q,α < ∞

}
where

||f ||p(·),q,α = sup
ρ>0

∥∥St(α)ρ f
∥∥
p(·),q . (9)
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These spaces have been introduced by Yang and Zhou [33] initially by means of

“continuous” norms |̃| · ||p(·),q,α (equivalent to || · ||p(·),q,α) defined as follows

|̃|f ||p(·),q,α = sup
r>0

∥∥∥ |B(·, r)|
1
α
− 1

p(·)−
1
q
∥∥fχB(·,r)

∥∥
p(·)

∥∥∥
q
, (10)

where B(·, r) denotes a ball in Rd with radius r. Let us recall some basic properties

of these spaces.

Proposition 2.4. [33] Let p(·) ∈ P(Rd) and 1 ≤ α, q ≤ ∞.

1)
(
Lp(·), ℓq

)α
are linear subspaces of L

p(·)
loc and, when endowed with ∥.∥p(·),q,α , Banach

spaces.

2)
(
Lp(·), ℓq

)α
are non trivial if and only if p(·) ≤ α ≤ q.

3) If p(·) ≤ α ≤ q then
(
Lp(·), ℓq

)α
are continuously included in

(
Lp(·), ℓq

)
.

4) If p(·) = p then
(
Lp(·), ℓq

)α
is just the classical Fofana’s space (Lp, ℓq)α.

Definition 2.3. Let p(·) ∈ P(Rd) and p(·) ≤ α ≤ q ≤ ∞.

1) A sequence {(cn, ρn, fn)}n≥1 of elements of C × (0,∞) × (Lp′(·), ℓq
′
) is called a

h-decomposition of an element f of L
p(·)
loc if

∥fn∥p′(·),q′ ≤ 1 , n ≥ 1∑
n≥1

|cn| < ∞

f =
∑
n≥1

cnSt
(α′)
ρn fn in the sense of L

p(·)
loc .

2) The space H(p′(·), q′, α′) = H(p′(·), q′, α′)(Rd) is defined as the set of all elements

of L
p(·)
loc whose set of h-decompositions is nonvoid; in other words

H(p′(·), q′, α′) = {f ∈ L
p(·)
loc : ∥f∥H(p′(·),q′,α′) < ∞}

with

∥f∥H(p′(·),q′,α′) = inf

{∑
n≥1

|cn| : f =
∑
n≥1

cnSt
(α′)
ρn fn

}
, (11)

where the infimum is taken over all h-decompositions of f with the convention

inf ∅ = ∞.

The following results have been obtained in [33] by Yang and Zhou.

Proposition 2.5. Let p(·) ∈ P(Rd) and p(·) ≤ α ≤ q ≤ ∞.

1)
(
Lp′(·), ℓq

′)
is a dense subspace of H(p′(·), q′, α′).

2) If f ∈
(
Lp(·), ℓq

)α
and g ∈ H(p′(·), q′, α′) then fg ∈ L1 and∣∣∣∣∫
Rd

f(x)g(x) dx

∣∣∣∣ ≤ ∥f∥p(·),q,α ∥g∥H(p′(·),q′,α′). (12)
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3) A predual of
(
Lp(·), ℓq

)α
is the space H(p′(·), q′, α′) in the following sense :

The operator T : f 7→ Tf , defined by

Tf (g) =

∫
Rd

f(x)g(x) dx , f ∈
(
Lp(·), ℓq

)α
, g ∈ H(p′(·), q′, α′), (13)

is an isometric isomorphism of
(
Lp(·), ℓq

)α
into the topological dual H(p′(·), q′, α′)∗

of H(p′(·), q′, α′).

3. Complementary properties on
(
Lp(·), ℓq

)α
and H (p′(·), q′, α′)

In this section we show some properties of the spaces
(
Lp(·), ℓq

)α
andH(p′(·), q′, α′).

Let us start with the following remark.

Remark 3.1. Let p(·) ∈ P(Rd) and p(·) ≤ α ≤ q ≤ ∞. It readily follows from

Point 3) of Proposition 2.5 that

∥f∥p(·),q,α = sup

{∫
Rd

|f(x)g(x)| dx , g ∈ H(p′(·), q′, α′), ∥g∥H(p′(·),q′,α′) ≤ 1

}
(14)

and therefore the Hahn-Banach theorem leads to

∥g∥H(p′(·),q′,α′) = sup

{∫
Rd

|g(x)f(x)| dx , f ∈
(
Lp(·), ℓq

)α
, ∥f∥p(·),q,α ≤ 1

}
. (15)

It is well known that the variable exponent Lebesgue spaces Lp(·) are solid spaces;

that is : if g is a measurable function and f ∈ Lp(·) such that |g| ≤ |f | almost

everywhere then g belongs to Lp(·) and ∥g∥p(·) ≤ ∥f∥p(·). An analogous result holds

true for variable exponents amalgam spaces (see [4, Proposition 2.2]). The following

proposition shows that this result extends to the setting of both variable exponent

Fofana’s spaces
(
Lp(·), ℓq

)α
and their preduals H(p′(·), q′, α′).

Proposition 3.1. Let p(·) ∈ P(Rd) and p(·) ≤ α ≤ q ≤ ∞. Then
(
Lp(·), ℓq

)α
and H(p′(·), q′, α′) are solid spaces.

Proof. Let f and g be two elements of L
p(·)
loc such that |g| ≤ |f | almost every-

where.

1) Let us suppose that f ∈
(
Lp(·), ℓq

)α
. It is easy to see that, for any ρ > 0,∣∣∣St(α)ρ g

∣∣∣ ≤ ∣∣∣St(α)ρ f
∣∣∣. Since (Lp(·), ℓq

)
is a solid space, we have∥∥St(α)ρ g

∥∥
p(·),q ≤

∥∥St(α)ρ f
∥∥
p(·),q , 0 < ρ < ∞

and therefore, taking the supremum over all ρ > 0, we get

∥g∥p(·),q,α ≤ ∥f∥p(·),q,α < ∞.

Hence g belongs to
(
Lp(·), ℓq

)α
.
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2) Let us suppose that f ∈ H(p′(·), q′, α′) and {(cn, ρn, fn)}n≥1 is a h-decomposition

of f ; that is : f =
∑
n≥1

cnSt
(α′)
ρn fn with ∥fn∥p′(·),q′ ≤ 1 for any integer n ≥ 1.

We set, for any integer n ≥ 1,

gn(x) =


0 if f(ρnx) = 0

g(ρnx)
f(ρnx)

fn(x) otherwise.

By hypothesis, |g| ≤ |f |. This implies that, for any integer n ≥ 1, |gn| ≤ |fn|
and therefore, since

(
Lp′(·), ℓq

′)
is a solid space, we have

∥gn∥p′(·),q′ ≤ ∥fn∥p′(·),q′ ≤ 1 , n ≥ 1. (∗)

We also have

∑
n≥1

cnSt
(α′)
ρn gn = g. (∗∗)

Let us prove (∗∗). Suppose that x is an element of Rd.

• 1st case : f(x) = 0.

We have 0 ≤ |g(x)| ≤ |f(x)| = 0 and so g(x) = 0. Furthermore, for any n ≥ 1,

f(x) = 0 =⇒ f
(
ρn(ρ

−1
n x)

)
= 0 =⇒ gn(ρ

−1
n x) = 0.

Therefore

∑
n≥1

cnSt
(α′)
ρn gn(x) =

∑
n≥1

cn ρ
− d

α′
n gn(ρ

−1
n x) = 0.

Hence

∑
n≥1

cnSt
(α′)
ρn gn(x) = 0 = g(x).
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• 2nd case : f(x) ̸= 0. We have∑
n≥1

cn

[
St(α

′)
ρn gn

]
(x) =

∑
n≥1

cn

[
St(α

′)
ρn

(
g(ρn ·)
f(ρn ·)

fn

)]
(x)

=
∑
n≥1

cn ρ
− d

α′
n

g(ρnρ
−1
n x)

f(ρn ρ−1
n x)

fn(ρ
−1
n x)

=
∑
n≥1

cn ρ
− d

α′
n

g(x)

f(x)
fn(ρ

−1
n x)

=
g(x)

f(x)

∑
n≥1

cn ρ
− d

α′
n fn(ρ

−1
n x)

=
g(x)

f(x)

∑
n≥1

cn St(α
′)

ρn fn(x)

=
g(x)

f(x)
f(x)

= g(x).

Hence (∗∗) holds. Thus, (∗) and (∗∗) imply that {(cn, ρn, gn)}n≥1 is a h-decomposition

of g and so

∥g∥H(p′(·),q′,α′) ≤
∑
n≥1

|cn|.

Taking the infimum with respect to all h-decompositions of f , we get

∥g∥H(p′(·),q′,α′) ≤ inf

{∑
n≥1

|cn|

}
= ∥f∥H(p′(·),q′,α′) < ∞.

Hence g belongs to H(p′(·), q′, α′). □

From Proposition 3.1 and [6, Theorem 1.7] we deduce what follows.

Corollary 3.2. Let p(·) ∈ P(Rd) and p(·) ≤ α ≤ q ≤ ∞. Then we have

∥ |f | ∥p(·),q,α = ∥f∥p(·),q,α , f ∈
(
Lp(·), ℓq

)α
(16)

and

∥ |g| ∥H(p′(·),q′,α′) = ∥g∥H(p′(·),q′,α′) , g ∈ H(p′(·), q′, α′). (17)

Let us show the following embedding results.

Proposition 3.3. Let p(·), p1(·) ∈ P(Rd) and 1 ≤ α, q, q1 ≤ ∞.

1) If p1(·) ≤ p(·) ≤ α ≤ q ≤ ∞ then

∥f∥p1(·),q,α ≤ 2 ∥f∥p(·),q,α , f ∈ L
p(·)
loc (18)

and therefore
(
Lp(·), ℓq

)α
is continuously embedded in

(
Lp1(·), ℓq

)α
.
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2) If p(·) ≤ α ≤ q ≤ q1 ≤ ∞ then

∥f∥p(·),q1,α ≤ ∥f∥p(·),q,α , f ∈ L
p(·)
loc (19)

and therefore
(
Lp(·), ℓq

)α
is continuously embedded in

(
Lp(·), ℓq1

)α
.

Proof. Let f be an element of L
p(·)
loc .

1) Assume that p1(·) ≤ p(·) ≤ α ≤ q ≤ ∞. For any ρ > 0 and k ∈ Zd, (4)

implies that ∥∥(St(α)ρ f
)
χQk

∥∥
p1(·)

≤ 2
∥∥(St(α)ρ f

)
χQk

∥∥
p(·) .

Therefore, taking the lq-norm, we get∥∥St(α)ρ f
∥∥
p1(·),q

≤ 2
∥∥St(α)ρ f

∥∥
p(·),q

and so, by taking the supremum over all ρ > 0, we obtain

∥f∥p1(·),q,α ≤ 2 ∥f∥p(·),q,α.

2) Assume that p(·) ≤ α ≤ q ≤ q1 ≤ ∞.

• 1st case : q = q1 = ∞. The result is obvious.

• 2nd case : q < ∞ and q1 = ∞. For any ρ > 0, we have∥∥∥{∥∥(St(α)ρ f
)
χQk

∥∥
p(·)

}
k∈Zd

∥∥∥
ℓ∞

≤
∥∥∥{∥∥(St(α)ρ f

)
χQk

∥∥
p(·)

}
k∈Zd

∥∥∥
ℓq

and so ∥∥St(α)ρ f
∥∥
p(·),∞ ≤

∥∥St(α)ρ f
∥∥
p(·),q .

Therefore, by taking the supremum over all ρ > 0, we obtain

∥f∥p(·),∞,α ≤ ∥f∥p(·),q,α.

• 3rd case : q1 < ∞. Since 1 ≤ q ≤ q1, for any ρ > 0, we have(∑
k∈Zd

∥∥(St(α)ρ f
)
χQk

∥∥q1
p(·)

) 1
q1

≤

(∑
k∈Zd

∥∥(St(α)ρ f
)
χQk

∥∥q
p(·)

) 1
q

and so ∥∥St(α)ρ f
∥∥
p(·),q1

≤
∥∥St(α)ρ f

∥∥
p(·),q .

Therefore, by taking the supremum over all ρ > 0, we obtain

∥f∥p(·),q1,α ≤ ∥f∥p(·),q,α.

□

Proposition 3.4. Let p(·) ∈ P(Rd) and p(·) ≤ α ≤ q ≤ ∞.

1) The spaces H(p′(·), q′, α′) are isometrically invariant under the family
{
St

(α′)
ρ

}
ρ>0

:∥∥∥St(α′)
ρ g

∥∥∥
H(p′(·),q′,α′)

= ∥g∥H(p′(·),q′,α′) , 0 < ρ < ∞ , g ∈ H(p′(·), q′, α′). (20)
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2) The set C∞
c := C∞

c (Rd) of all infinitely differentiable and compactly supported

functions on Rd is a dense subspace of H(p′(·), q′, α′).

Proof. 1) Let g ∈ H(p′(·), q′, α′) and {(cn, ρn, gn)}n≥1 any h-decomposition of

g. For 0 < ρ < ∞, it is clear that

St(α
′)

ρ g =
∑
n≥1

cnSt
(α′)
ρρn gn

and so that {(cn, ρρn, gn)}n≥1 is a h-decomposition of St
(α′)
ρ g. Consequently, we

obtain ∥∥∥St(α′)
ρ g

∥∥∥
H(p′(·),q′,α′)

= ∥g∥H(p′(·),q′,α′).

2) Let g be an element ofH(p′(·), q′, α′). By Point 4) of Proposition 2.3 and Point

1) of Proposition 2.5, g can be approximated by some function φ ∈ Cc. Moreover,

there exists some element ϕ of C∞
c such that ϕ∗φ belongs to C∞

c and converges to φ

in
(
Lp′(·), ℓq

′)
, and therefore in H(p′(·), q′, α′), where ϕ ∗ φ denotes the convolution

product of ϕ and φ. Therefore the following inequality

∥ϕ ∗ φ− g∥H(p′(·),q′,α′) ≤ ∥ϕ ∗ φ− φ∥H(p′(·),q′,α′) + ∥φ− g∥H(p′(·),q′,α′)

shows that ϕ ∗ φ converges to g. This ends the proof. □

4. Riesz potentials operators

The Riesz potentials operator Iγ (0 < γ < d) is defined by

Iγf(x) =

∫
Rd

f(y)

|x− y|d−γ
dy

when this integral makes sense. The boundedness of this operator in variable expo-

nent Fofana’s spaces has been studied by Yang and Zhou. Notice that, with very

slight modification of the hypotheses, their result (see [33, Theorem 4.1]) remains

valid. Actually the following result holds true.

Theorem 4.1. Let p(·) ∈ P log(Rd), p(·) ≤ α < q ≤ ∞, 0 < γ < d
(

1
α
− 1

q

)
,

1
p∗(·) = 1

p(·) −
γ
d
and 1 ≤ β ≤ ∞. Then the Riesz potentials operator Iγ is bounded

from
(
Lp(·), ℓq

)α
to
(
Lp∗(·), ℓq

)β
if and only if 1

β
= 1

α
− γ

d
.

As a consequence of Theorem 4.1 we have the following result.

Theorem 4.2. Let p(·) ∈ P log(Rd), p(·) ≤ α < q ≤ ∞, 0 < γ < d
(

1
α
− 1

q

)
,

1
p∗(·) = 1

p(·) −
γ
d
and 1 ≤ β ≤ ∞. Then the Riesz potentials operator Iγ is bounded

from H(p′∗(·), q′, β′) to H(p′(·), q′, α′) if and only if 1
β
= 1

α
− γ

d
.
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Proof. 1) Let us assume that 1
β
= 1

α
− γ

d
and g ∈ H(p′∗(·), q′, β′). A direct

calculation, using Fubini’s theorem, shows that for any f ∈
(
Lp(·), ℓq

)α
, we have∫

Rd

|Iγg(x)f(x)| dx ≤
∫
Rd

|g(x)| Iγ(|f |)(x)dx.

Furthermore, by Theorem 4.1, there exists a constant C such that

∥Iγf∥p∗(·),q,β ≤ C∥f∥p(·),q,α , f ∈
(
Lp(·), ℓq

)α
.

Therefore, using Point 2) of Proposition 2.5 and Corollary 3.2, we obtain∫
Rd

|Iγg(x)f(x)| dx ≤ C ∥g∥H(p′∗(·),q′,β′) ∥f∥p(·),q,α

and so

sup

{∫
Rd

|Iγg(x)f(x)| dx , f ∈
(
Lp(·), ℓq

)α
, ∥f∥p(·),q,α ≤ 1

}
≤ C ∥g∥H(p′∗(·),q′,β′).

This implies, by Remark 3.1, that

∥Iγg∥H(p′(·),q′,α′) ≤ C ∥g∥H(p′∗(·),q′,β′).

This shows that Iγ is bounded from H(p′∗(·), q′, β′) to H(p′(·), q′, α′).

2) Let us assume that Iγ is bounded from H(p′∗(·), q′, β′) to H(p′(·), q′, α′).

Arguing as in point 1), we get that Iγ is bounded from
(
Lp(·), ℓq

)α
to
(
Lp∗(·), ℓq

)β
and therefore by Theorem 4.1 we obtain 1

β
= 1

α
− γ

d
. This completes the proof. □

5. Maximal operators

The fractional maximal operators Mγ (0 ≤ γ < d) are defined by

Mγf(x) = sup
r>0

|Q(x, r)|
γ
d
−1

∫
Q(x,r)

|f(y)|dy , x ∈ Rd , f ∈ L1
loc,

where

Q(x, r) =
d∏

j=1

[
xj −

r

2
, xj +

r

2

)
, x = (x1, x2, ..., xd) ∈ Rd , 0 < r < ∞.

When γ = 0, we have the Hardy-Littlewood maximal operator M0 which is one

of the most important classical operators in Harmonic Analysis because its controls

various other important operators. Whereas, if 0 < γ < d then the following

pointwise control holds :

Mγf(x) ≤ Cd Iγ(|f |)(x) , x ∈ Rd , f ∈ L1
loc, (21)

where Cd is a real constant depending only on d. Since
(
Lp(·), ℓq

)α
and H(p′(·), q′, α′)

are solid spaces (see Proposition 3.1), it readily follows from Theorem 4.1, Theorem

4.2 and inequality (21), the following results.
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Corollary 5.1. Let p(·) ∈ P log(Rd), p(·) ≤ α < q ≤ ∞, 0 < γ < d
(

1
α
− 1

q

)
,

1
p∗(·) =

1
p(·)−

γ
d
and 1

α∗
= 1

α
− γ

d
. Then the fractional maximal operator Mγ is bounded

from :

1)
(
Lp(·), ℓq

)α
to
(
Lp∗(·), ℓq

)α∗

2) H(p′∗(·), q′, α′
∗) to H(p′(·), q′, α′).

The boundedness of M0 on variable exponent amalgam spaces was investigated

by many authors. The one dimensional case of the proposition below is contained

in [21, 28].

Proposition 5.2. Let p(·) ∈ P log(Rd) and 1 < q < ∞. Then the Hardy-

Littlewood maximal operator M0 is bounded on
(
Lp(·), ℓq

)
.

We shall use the fact that the Hardy-Littlewood maximal operator commutes

with the dilation operators. A direct calculation shows this result. However, for the

reader’s convenience we give its detailed proof.

Lemma 5.3. Let p(·) be a variable exponent on Rd, 0 ≤ γ < d and 0 < ρ, α < ∞.

Then for any element f of L
p(·)
loc we have

Mγ

(
St(α)ρ f

)
= ργ St(α)ρ (Mγf) . (22)

In particular, we have

M0

(
St(α)ρ f

)
= St(α)ρ (M0f) . (23)

Proof. Let f ∈ L
p(·)
loc , x ∈ Rd and Q(x, r) be a cube of Rd. We have

Mγ

(
St(α)ρ f

)
(x) = Mγ

(
ρ−

d
αf(ρ−1.)

)
(x) = ρ−

d
αMγ

(
f(ρ−1.)

)
(x)

= ρ−
d
α sup

r>0

{
|Q(x, r)|

γ
d
−1

∫
Q(x,r)

∣∣f(ρ−1y)
∣∣ dy}

= ρ−
d
α sup

r>0

{
|Q(x, r)|

γ
d
−1

∫
Q(x,r)

∣∣f(ρ−1y)
∣∣ ρd ρ−ddy

}
.

By setting z = ρ−1y, we have dz = ρ−ddy and

y ∈ Q(x, r) =⇒ z ∈ Q
(
ρ−1x, ρ−1r

)
.

Therefore, we get

Mγ

(
St(α)ρ f

)
(x) = ρ−

d
α sup

r>0

{
ρd |Q(x, r)|

γ
d
−1

∫
Q(ρ−1x, ρ−1r)

|f(z)| dz
}
.

Furthermore, we have

ρd |Q(x, r)|
γ
d
−1 = ρd rd(

γ
d
−1) = ρd ρd(

γ
d
−1) (ρ−1r)d(

γ
d
−1) = ργ(ρ−1r)d(

γ
d
−1)

= ργ
∣∣Q (ρ−1x, ρ−1r

)∣∣ γd−1
.
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Therefore

Mγ

(
St(α)ρ f

)
(x) = ρ−

d
α sup

r>0

{
ργ
∣∣Q (ρ−1x, ρ−1r

)∣∣ γd−1
∫
Q(ρ−1x, ρ−1r)

|f(z)| dz
}
.

We set t = ρ−1r and so we obtain

Mγ

(
St(α)ρ f

)
(x) = ργ ρ−

d
α sup

t>0

{∣∣Q (ρ−1x, t
)∣∣ γd−1

∫
Q(ρ−1x, t)

|f(z)| dz
}

= ργ ρ−
d
αMγf(ρ

−1x)

= ργ St(α)ρ (Mγf) (x).

Should this equality be true for any x ∈ Rd, we actually have

Mγ

(
St(α)ρ f

)
= ργ St(α)ρ (Mγf) .

As a particular case, by taking γ = 0, we obtain

M0

(
St(α)ρ f

)
= St(α)ρ (M0f) .

□

We can now prove the boundedness of the Hardy-Littlewood maximal operator

on variable exponent Fofana’s spaces.

Theorem 5.4. Let p(·) ∈ P log(Rd) and p(·) ≤ α ≤ q < ∞. Then the Hardy-

Littlewood maximal operator M0 is bounded on
(
Lp(·), ℓq

)α
.

Proof. Let f ∈
(
Lp(·), ℓq

)α
and ρ > 0. Using Lemma 5.3, we get∥∥St(α)ρ (M0f)
∥∥
p(·),q =

∥∥M0

(
St(α)ρ f

)∥∥
p(·),q .

Therefore, by Proposition 5.2, there exists a constant C such that∥∥St(α)ρ (M0f)
∥∥
p(·),q ≤ C

∥∥St(α)ρ f
∥∥
p(·),q

and so, taking the supremum over all ρ > 0, we get

∥M0f∥p(·),q,α ≤ C ∥f∥p(·),q,α .

This ends the proof. □

We also prove the following result for the predual spaces.

Theorem 5.5. Let p(·) ∈ P log(Rd) and p(·) ≤ α ≤ q < ∞. Then the Hardy-

Littlewood maximal operator M0 is bounded on H(p′(·), q′, α′).

Proof. Let g ∈ H(p′(·), q′, α′) and {(cn, ρn, gn)}n≥1 be a h-decomposition of g;

that is g =
∑
n≥1

cnSt
(α′)
ρn gn with ∥gn∥p′(·),q′ ≤ 1 for any integer n ≥ 1.

Thanks to the homogeneity of M0 and Lemma 5.3, we have

M0

(
cnSt

(α′)
ρn gn

)
= |cn|St(α

′)
ρn (M0(gn)) , n ≥ 1 (∗)
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and by Proposition 5.2, there exists a constant C > 0 such that

∥M0(gn)∥p′(·),q′ ≤ C ∥gn∥p′(·),q′ ≤ C , n ≥ 1. (∗∗)

Let us set f =
∑
n≥1

|cn|St(α
′)

ρn (M0(gn)) . It is clear that

f =
∑
n≥1

C |cn|St(α
′)

ρn

(
C−1M0(gn)

)
and by (∗∗), we have ∥∥C−1M0(gn)

∥∥
p′(·),q′ ≤ 1.

Thus {(C cn, ρn, C
−1M0(gn))}n≥1 is a h-decomposition of f and consequently

∥f∥H(p′(·),q′,α′) ≤ C
∑
n≥1

|cn|. (∗ ∗ ∗)

Furthermore, it is well known that M0 is a sublinear operator. This and (∗)
imply that

M0g = M0

(∑
n≥1

cnSt
(α′)
ρn gn

)
≤
∑
n≥1

M0

(
cnSt

(α′)
ρn gn

)
=
∑
n≥1

|cn|St(α
′)

ρn (M0(gn)) = f.

Therefore, from the solidity of H(p′(·), q′, α′) (see Proposition 3.1) and (∗ ∗ ∗),
we get

∥M0g∥H(p′(·),q′,α′) ≤ ∥f∥H(p′(·),q′,α′) ≤ C
∑
n≥1

|cn|.

By taking the infimum with respect to all h-decompositions of g, we obtain

∥M0g∥H(p′(·),q′,α′) ≤ C∥g∥H(p′(·),q′,α′).

This completes the proof. □

6. Calderón-Zygmund operators of type ω

Let ω be a nonnegative nondecreasing function on (0,∞) such that∫ 1

0

ω(t) t−1dt < ∞

and T a Calderón-Zygmund operator of type ω : T is a linear bounbed map of C∞
c

into L2 and there is a continuous map k of Rd × Rd\
{
(x, x) / x ∈ Rd

}
into C such

that :

• Tf(x) =

∫
Rd

k(x, y)f(y)dy , f ∈ C∞
c and x ∈ Rd\supp(f) (24)

• there is a real constant A > 0 such that, for any x, y and z in Rd

|k(x, y)| ≤ A |x− y|−d if x ̸= y , (25)
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and

|k(x, y)− k(x, z)|+ |k(y, x)− k(z, x)| ≤ A

|x− y|d
ω

(
|y − z|
|x− y|

)
(26)

if 0 < 2 |y − z| ≤ |x− y|.
Notice that these generalized Calderón-Zygmund operators have been introduced

by Yabuta in [32]. They are related to the local sharp maximal operators M ♯
λ (0 <

λ < 1) defined by

M ♯
λf(x) = sup

Q∋x
inf
c∈R

[((f − c)χQ)
∗ (λ|Q|)] , x ∈ Rd , f ∈ L1

loc

where the supremum is taken over all cube Q of Rd containing x and g∗ is the

decreasing rearrangement function of g ∈ L1
loc, and defined by

g∗(t) = inf
{
s > 0 :

∣∣{x ∈ Rd : |g(x)| > s
}∣∣ ≤ t

}
, 0 < t < ∞.

The following result shows a link between Calderón-Zygmund operators of type

ω, the Hardy-Littlewood maximal operator and local sharp maximal operators.

Proposition 6.1. [10, Proposition 5.6]. Let T be a Calderón-Zygmund operator

of type ω and 0 < λ < 1. Then there is a real constant c(λ) > 0 such that

M ♯
λ(Tf)(x) ≤ c(λ) M0f(x) , f ∈ C∞

c , x ∈ Rd. (27)

Let us recall the following result of Lerner.

Proposition 6.2. [26] There is an element (cd, λd) of (0,∞)× (0, 1) such that

for any element f of L1
loc satisfying∣∣{x ∈ Rd / |f(x)| > t

}∣∣ < ∞ , t > 0,

we have ∫
Rd

|f(x)g(x)|dx ≤ cd

∫
Rd

M ♯
λd
f(x)M0g(x)dx , g ∈ L1

loc. (28)

From the above propositions, we deduce the following result which is a gener-

alization of [10, Corollary 5.8] and its proof is just an adaptation of that given

there.

Theorem 6.3. Let p(·) ∈ P log(Rd), p(·) ≤ α ≤ q < ∞ and T be a Calderón-

Zygmund operator of type ω. Then T has an unique bounded linear extension to

H(p′(·), q′, α′).

Proof. Let (g, f) be an element of C∞
c × L1

loc.

By the definition of T, Tg belongs to L2 and this implies that∣∣{x ∈ Rd / |Tg(x)| > t
}∣∣ ≤ 1

t2
∥Tg∥22 < ∞ , t > 0.



BOUNDEDNESS OF SOME OPERATORS ON VARIABLE EXPONENT FOFANA’S SPACES 85

Therefore∫
Rd

|Tg(x)f(x)|dx ≤ cd

∫
Rd

M ♯
λd
(Tg)(x)M0f(x)dx (by (28))

≤ cd c(λd)

∫
Rd

M0g(x)M0f(x)dx (by (27))

≤ cd c(λd) ∥M0g∥H(p′(·),q′,α′) ∥M0f∥p(·),q,α (by (12))

≤ C ∥g∥H(p′(·),q′,α′) ∥f∥p(·),q,α (by Theorem 5.4 and Theorem 5.5)

where C is a real constant not depending on f and g. Thus, by (15)

∥Tg∥H(p′(·),q′,α′) ≤ C ∥g∥H(p′(·),q′,α′) g ∈ C∞
c .

Therefore, by the density of C∞
c in H(p′(·), q′, α′) (see Proposition 3.4), T has an

unique bounded linear extension to H(p′(·), q′, α′). □

From what precedes we also deduce the following theorem whose proof ideal

comes from [10, Corollary 5.9].

Theorem 6.4. Let p(·) ∈ P log(Rd), p(·) ≤ α ≤ q < ∞ and T be a Calderón-

Zygmund operator of type ω. Then T admits a bounded linear extension to (Lp(·), ℓq)α.

Proof. We denote by T2 the unique bounded linear extension of T to L2. Its

transpose T t
2, defined by∫

Rd

T t
2f(x) g(x)dx =

∫
Rd

f(x)T2 g(x)dx , f, g ∈ L2

is a bounded linear operator on L2. It is known (see [1]) that

T t
2f(x) =

∫
Rd

k(y, x)f(y)dy , f ∈ C∞
c , x ∈ Rd\supp(f).

From this and inequalities (25) and (26) we deduce that the restriction T t of

T t
2 to C∞

c is a Calderón-Zygmund operator of type ω which, by Theorem 6.3, has

an unique bounded linear extension T t
p′(·),q′,α′ to H(p′(·), q′, α′). The transpose H of

T t
p′(·),q′,α′ is a bounded linear operator on the dual space (Lp(·), ℓq)α of H(p′(·), q′, α′).

It satisfies∫
Rd

Hf(x) g(x)dx =

∫
Rd

f(x)T t
p′(·),q′,α′ g(x)dx , (f, g) ∈ (Lp(·), lq)α×H(p′(·), q′, α′)

and therefore, for any f and g in C∞
c∫

Rd

Hf(x) g(x)dx =

∫
Rd

f(x)T t
2 g(x)dx =

∫
Rd

T2f(x) g(x)dx =

∫
Rd

Tf(x) g(x)dx.

This shows that H is an extension of T to (Lp(·), ℓq)α. □
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7. Generalized sublinear operators

We consider a class of sublinear operators Tγ (0 ≤ γ < d) satisfying the condition

|Tγf(x)| ≤ C

∫
Rd

|f(y)|
|x− y|d−γ

dy (29)

for any f ∈ L1 with compact support K and x ∈ Rd\K.

We point out that the condition (29) was first introduced by Soria and Weiss

[30]. This condition is satisfied by many interesting operators in Harmonic Analysis.

When γ = 0, such as the Hardy-Littewood maximal operator, Calderón-Zygmund

singular integral operators, Bochner-Riesz operators at the critical index and so on.

When 0 < γ < d, such as fractional maximal operators, Riesz potential operators,

fractional oscillatory singular integrals and so on.

Before announcing our result, we prove the following preparatory lemma.

Lemma 7.1. Let p(·) ∈ P log(Rd), 0 ≤ γ < d
p+

and 1
p∗(·) =

1
p(·) −

γ
d
. Then for any

integer k ∈ N and every ball B in Rd, we have

∥χ2k+1B∥p′(·) ∥χB∥p∗(·) ≲
(

1

2d(k+1)

) 1
p(·)−1

|B|1−
γ
d . (30)

Proof. Let k ∈ N and B be any ball in Rd. We have by (5)

∥χ2k+1B∥p′(·) ∥χB∥p∗(·) ≲
|2k+1B|

∥χ2k+1B∥p(·)
∥χB∥p∗

≲ |2k+1B|1−
1

p(·)
∥χB∥p∗(·)

|2k+1B|−
1

p(·) ∥χ2k+1B∥p(·)

≲

(
1

2d(k+1)

) 1
p(·)−1 |B|1−

1
p(·) ∥χB∥p∗(·)

|2k+1B|−
1

p(·) ∥χ2k+1B∥p(·)

≲

(
1

2d(k+1)

) 1
p(·)−1

|B|1−
γ
d

|B|−
1

p∗(·) ∥χB∥p∗(·)
|2k+1B|−

1
p(·) ∥χ2k+1B∥p(·)

≲

(
1

2d(k+1)

) 1
p(·)−1

|B|1−
γ
d ,

where the last inequality follows from Lemma 4.1.6 and Corollary 4.5.9 in [12]. □

Our result can be stated as follows.

Theorem 7.2. Let p(·) ∈ P log(Rd), p(·) ≤ α < q ≤ ∞, 0 ≤ γ < d
(

1
α
− 1

q

)
,

1
p∗(·) =

1
p(·) −

γ
d
and 1

α∗
= 1

α
− γ

d
. If Tγ is a sublinear operator which is bounded from

Lp(·) to Lp∗(·) and satisfy the condition (29) then Tγ is bounded from
(
Lp(·), ℓq

)α
to(

Lp∗(·), ℓq
)α∗

.
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Proof. We fix r > 0, x ∈ Rd and set B := B(x, r), λB := B(x, λr) for all

λ > 0. Let f be an element of
(
Lp(·), ℓq

)α
. We have

f = fχ2B +
∞∑
k=1

fχ(2k+1B)\(2kB).

By the sublinearity of Tγ and the condition (29) we obtain

|(Tγf)| ≲ |Tγ(fχ2B)|+
∞∑
k=1

∣∣2k+1B
∣∣ γd−1

∫
2k+1B

f(y)dy

and so by application of Hölder’s inequality (see Proposition 2.1), we have

|(Tγf)| ≲ |Tγ(fχ2B)|+
∞∑
k=1

∣∣2k+1B
∣∣ γd−1 ∥fχ2k+1B∥p(·) ∥χ2k+1B∥p′(·) .

Taking the Lp∗(·)-norm on the ball B and using the boundedness of Tγ from Lp(·)

to Lp∗(·), we obtain

∥(Tγf)χB∥p∗(·) ≲ ∥fχ2B∥p(·) +
∞∑
k=1

∣∣2k+1B
∣∣ γd−1 ∥fχ2k+1B∥p(·) ∥χ2k+1B∥p′(·) ∥χB∥p∗(·) .

According to Lemma 7.1, we get

∥(Tγf)χB∥p∗(·) ≲ ∥fχ2B∥p(·) +
∞∑
k=1

∣∣2k+1B
∣∣ γd−1 ∥fχ2k+1B∥p(·)

(
1

2d(k+1)

) 1
p(·)−1

|B|1−
γ
d

≲ ∥fχ2B∥p(·) +
∞∑
k=1

(
1

2d(k+1)

) 1
p∗(·)

∥fχ2k+1B∥p(·).

Therefore, since 1
α∗

− 1
p∗(·) −

1
q
= 1

α
− 1

p(·) −
1
q
, we obtain

|B|
1
α∗

− 1
p∗(·)

− 1
q ∥(Tγf)χB∥p∗(·) ≲ |B|

1
α
− 1

p(·)−
1
q ∥fχ2B∥p(·)

+ |B|
1
α
− 1

p(·)−
1
q

∞∑
k=1

(
1

2d(k+1)

) 1
p∗(·)

∥fχ2k+1B∥p(·)

=: I + II. (∗)

We have

I = |2B|
1
α
− 1

p(·)−
1
q ∥fχ2B∥p(·)

(
|B|
|2B|

) 1
α
− 1

p(·)−
1
q

≤ |2B|
1
α
− 1

p(·)−
1
q ∥fχ2B∥p(·)

(
|B|
|2B|

) 1
α
− 1

p−
− 1

q

≲ |2B|
1
α
− 1

p(·)−
1
q ∥fχ2B∥p(·) . (∗∗)
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Furthermore, we have

II =
∞∑
k=1

(
1

2d(k+1)

) 1
p∗(·)

|B|
1
α
− 1

p(·)−
1
q ∥fχ2k+1B∥p(·)

≲
∞∑
k=1

(
1

2d(k+1)

) 1
α∗

− 1
q ∣∣2k+1B

∣∣ 1α− 1
p(·)−

1
q ∥fχ2k+1B∥p(·). (∗ ∗ ∗)

Combining (∗), (∗∗) and (∗ ∗ ∗), we get

|B|
1
α∗

− 1
p∗(·)

− 1
q ∥(Tγf)χB∥p∗(·) ≲ |2B|

1
α
− 1

p(·)−
1
q ∥fχ2B∥p(·)

+
∞∑
k=1

(
1

2d(k+1)

) 1
α∗

− 1
q ∣∣2k+1B

∣∣ 1α− 1
p(·)−

1
q ∥fχ2k+1B∥p(·).

Taking the Lq-norm of both sides of the above inequality and therefore the

supremum over all r > 0, we obtain

∥̃Tγf∥p∗(·),q,α∗
≲

[
1 +

∞∑
k=1

(
1

2d(k+1)

) 1
α∗

− 1
q

]
∥̃f∥p(·),q,α.

This completes the proof because the series on the right hand side converges. □

Notice that Theorem 4.1 and Point 1) of Corollary 5.1 are particular cases of

Theorem 7.2. Moreover, when we take γ = 0 in Theorem 7.2, we obtain the following

result which extends Theorem 5.4 and Theorem 6.4. It is also a generalization of

[16, Theorem 4.5].

Corollary 7.3. Let p(·) ∈ P log(Rd) and p(·) ≤ α < q ≤ ∞. If T0 is a sublinear

operator which is bounded on Lp(·) and satisfy the condition (29) then T0 is bounded

on
(
Lp(·), ℓq

)α
.
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