[1] T. Abdeljawad, R. P. Agarwal, E. Karapinar, and P. S. Kumari, Solutions of the nonlinear integral equation and fractional differential equation using the technique of a fixed point with a numerical experiment in extended b-Metric space. Symmetry, 11(5) (2019), 686.

[2] I. Altun, N. Hussain, M. Qasim, and H. H. Al-Sulami, A new fixed point result of Perov type and its application to a semilinear operator system, Mathematics, 7(11) (2019), 1019.

[3] S. Banach, Sur les operations dans les ensembles abstraits et leur applications aux equations integrale, Fund. Math., 3 (1922), 133-181.

[4] R.K. Bisht and R.P. Pant, A remark on discontinuity at fixed point, J. Math. Anal. Appl., 445 (2017), 1239–1241.

[5] A. Branciari, A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces, Pub. Math. Debrecen, 57(1-2) (2000), 31-37.

[6] S. Chaipornjareansri, Fixed point theorems for generalized θ-ϕ-contractions in S-metric spaces, Ann. Meet. Math. 2018, Thai J. Math., Special Issue (2019), 46-59.

[7] T. Hu, D. Zheng, and J. Zhou, Some new fixed point theorems on partial metric spaces, Int. J. Math. Anal., 12 (2018), 343-352.

[8] N. Hussain, A. E. Al-Mazrooei, and J. Ahmed, Fixed point results for generalized (α-η)-θ contractions with applications, J. Nonlinear Sci. Appl., 10(8) (2017), 4197-4208.

[9] A. Hussain and M. Adeel, Remark on new fixed point theorems for α-Hθ-contractions in ordered metric spaces, J. Fixed Point Theory Appl., 21(2) (2019), 63.

[10] M. Imdad, W. A. Alfaqih, and I. A. Khan, Weak θ-contractions and some fixed point results with applications to fractal theory, Adv. Differ. Equ., 2018(1) (2018), 1-18.

[11] M. Imded, B. Ali, W. M. Alfaqih, S. Sessa, and A. Aldurayhim, New fixed Point results via (θ, ψ)R-weak contractions with an application, Symmetry, 12(6) (2020), 887.

[12] K. Javed, M. Arshad, A. S. Baazeem, and N. Mlaiki, Solving a fractional differential equation via θ-contractions in R-complete metric spaces, Aims Math. 7(9) (2022), 16869-16888.

[13] J. A. Jiddah, M. Alansari, O. M. Mohamed, M. S. Shagari, and A. A. Bakery, Fixed point results of Jaggi-type hybrid contraction in generalized metric spaces, J. Funct. Spaces, 2022 (2022).

[14] J. A. Jiddah, M. Noorwali, M. S. Shagari, S. Rashid, and F. Jarad, Fixed point results of a new family of hybrid contractions in generalized metric space with applications, Aims Math., 7(10) (2022), 17894-17912.

[15] M. Jleli, E. Karapinar, and B. Samet, Further generalizations of the Banach contraction principle, J. Inequal. Appl., 2014(1) (2014), 1-9.

[16] M. Jleli and B. Samet, B. (2014). A new generalization of the Banach contraction principle, J. Inequal. Appl., 2014 (2014), 1-8.

[17] S. Kanwal, A. Ali, A. Al Mazrooei, and G. Santos-Garcia, Existence of fuzzy fixed points of set-valued fuzzy mappings in metric and fuzzy metric spaces, Aims Math., 8(5) (2022), 10095–10112.

[18] S. Kanwal and A. Azam, Bounded lattice fuzzy coincidence theorems with applications, J. Intell. Fuzzy Syst. 36 (2019), 1-15.

[19] S. Kanwal, A. Azam, and F. A. Shami, On coincidence theorem in intuitionistic fuzzy b-metric spaces with application, J. Funct. Spaces, 2022 (2022), Article ID 5616824, 10 pages.

[20] S. Kanwal, U. Hanif, M.E. Noorwali, and M.A. Alam, On fixed-point results of generalized contractions, J. Funct. Spaces, 2022 (2022), Article ID 9167716, 11 pages.

[21] S. Kanwal, M. S. Shagari, H. Aydi, A. Mukheimer, and T. Abdeljawad, Common fixed-point results of fuzzy mappings and applications on stochastic Volterra integral equations, J. Inequal. Appl. 2022(1) (2022), 1-15.

[22] A. Kari, M. Rossafi, E. Marhrani, and M. Aamri, New fixed point theorems for θ-ϕ-contraction on rectangular b-metric spaces, Int.J. Math. Math. Sci., 2020 (2020), 12 pages.

[23] X. Liu, S. Chang, Y. Xiao, and L. Zhao, Existence of fixed points for θ-type contraction and θ-type Suzuki contraction in complete metric spaces, Fixed Point Theory Appl., 2016 (2016), 1-12.

[24] S. G. Matthews, Partial metric topology, Proc. 8th Summer Conf. General Topology Appl., Ann. New York Acad. Sci., 728(1) (1994), 183-197.

[25] G. Minak and I. Altun, Ordered θ-contractions and some fixed point results, J. Nonlinear Funct. Anal., 2017 (2017), Article ID 41, 1-9.

[26] B. Mohammadi, F. Golkarmanesh, and V. Parvaneh, Common fixed point results via implicit contractions for multi-valved mappings on b-metric like spaces, Cogent Math. Statist., 5(1) (2018), Article ID 1493761.

[27] Z. Ma, A. Hussain, M. Adeel, N. Hussain, and E. Savas, Best proximity point results for generalized θ-contractions and application to matrix equations, Symmetry 11 (2019), no. 1, 93.

[28] W. Onsod, P. Kumam, and T. Saleewong, Fixed point of Suzuki-Geraghty type θ-contractions in partial metric spaces with some applications, Sci. Technol. Asia, 28(1) (2023), 17-25.

[29] W. Onsod, T. Saleewong, J. Ahmad, A.E. Al-Mazrooei, and P. Kumam, Fixed Points of a θ-contraction on metric spaces with a graph, Commun. Nonlinear Anal., 2 (2016), page 139-149.

[30] V. Parvaneh, Some J-S type fixed Point Theorems for α-θ-Generalzed Contraction in b-Metric spaces, J. Math. Anal., 8(3) (2017), 135-147.

[31] V. Parvaneh, F. Golkarmanesh, N. Hussain, and P. Salimi, New Fixed point theorems for α-Hθ-contractions in ordered metric spaces, J. Fixed Point Theory Appl., 18(4) (2016), 905-925.

[32] V. Parvaneh, N. Hussain, A. Mukheimer, and H. Aydi, On fixed point results for modifies θ-contractions with applications, Axioms, 8(3) 2019, 13 pages.

[33] A. Perveen, W.M. Alfaqih, S. Sessa, and M. Imdad, θ∗-weak contractions and discontinuity at the fixed point with applications to matrix and integral equations, Axioms 10(3) (2021), 209.

[34] M. Rossafi, A. Kari, E. Marhrani, and M. Aamri, fixed point theorems for generalized θ-ϕ-Expansive mapping in rectangular metric spaces, Abstr. Appl. Anal., 2021 (2021), Article ID 6642723, 10 pages.

[35] M. Rossafi, A. Kari, C. Park, J.R. Lee, New fixed point theorems for θ-ϕ-contraction on bmetric spaces, J. Math. Comput. Sci., 29(1) (2023), 12-27.

[36] I.A. Rus, Picard operators and applications, Sci. Math. Jap., 58(1) (2003), 191–219.

[37] M. S. Shagari, S. Rashid, K. M. Abualnaja, and M. Alansari, On nonlinear fuzzy set-valued θ-contractions with applications, AIMS Math., 6(10) (2021), 10431-10448.

[38] T. Suzuki, A new type of fixed point theorem in metric spaces, Nonlinear Anal.: Theory Meth. Appl. 71(11) (2009), 5313-5317.

[39] S.S. Yesilkaya and C. Aydin, Fixed point results of expansive mappings in metric spaces, Mathematics 8 (2020), 1800.

[40] J. Zhang, Y. Su, and Q. Cheng A note on ’A best proximity point theorem for Geraghtycontractions, Fixed Point Theory Appl., 2013 (2013), 1-4.

[41] D. Zheng, Fixed point theorems for generalized θ-ϕ-contractions in G-metric spaces, J. Funct. Spaces, 2018 (2018), Article ID 1418725, 8 pages.

[42] D. Zheng, Z. Cai, and P. Wang, New fixed point theorems for θ-ϕ contraction in complete metric spaces, J. Nonlinear Sci. Appl., 10(5) (2017), 2662–2670.

[43] D. Zheng, X. Liu, and G. Zhang, Some fixed point theorems for θ-ϕ C-contractions, J. Nonlinear Sci. Appl., 10 (2017), 5723–5733.

[44] D. Zheng and P.Wang, Weak θ-ϕ-contraction and discontinuity, J. Nonlinear Sci. Appl., 10(5) (2017), 2318-2323.