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A survey on Θ-contractions and fixed point

theorems

Paul Oloche1 and Mohammed Shehu Shagari∗,2

Abstract. In this work, a collection of various fixed point results of θ-contractions

are examined. Important results from when the concept was introduced up to the

recent developments are discussed. Hence, the aim of this paper is to collate and

analyze the advances of fixed point results in the setting of θ-contractions which

will be helpful and handy for researchers in fixed point theory and related domains.

1. Introduction

The fixed point theorem, generally known as the Banach contraction principle,

appeared in explicit form in Banach’s thesis in 1922 [3], where it was used to es-

tablish the existence of a solution to some classes of integral equations. Since then,

because of its simplicity and usefulness, it has become a very popular tool in solving

existence problems in many branches of mathematical analysis. The Banach con-

traction principle has been generalized in many ways over the years. Some of the

improvements are in crisp setting (e.g. [13, 14, 20]) and others are non-crisp (see,

for example, [37, 17, 21, 18, 19]). In 2014, Jleli and Samet [16] introduced a new

type of contractive mapping called the θ-contraction in the setting of Branciari met-

ric spaces and established some fixed point theorems which extended some existing

ones, including the Banach contraction mapping principle.

Following the introduction of the idea of θ-contraction, more than a handful of

results have been presented, discussing various conditions under which such map-

pings have either a unique or some fixed points in the underlying space. However,

the available literature reveals that up to this time, there is no single monograph
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containing the progress of fixed point theory in the mentioned direction. There-

fore, this manuscript focuses on highlighting distinct and remarkable fixed point

extensions of θ-contraction in effort to provide researchers in the area of fixed point

theory with a glimpse into the advancements of fixed point theorems of contraction

mappings.

2. Preliminaries

In this section, we introduce some definitions, fundamental notations, and ter-

minology that will be deployed subsequently. Throughout this paper, every set X

is considered non-empty, and N is the set of natural numbers. We begin with the

definition of generalized metric space due to Branciari [5].

Definition 2.1. [5] Let X be a non-empty set and d : X ×X −→ [0,∞) be a

mapping such that for all x, y ∈ X and for all distinct points u, v ∈ X, each of them

different from x and y, we have

(i) d(x, y) = 0 ⇔ x = y;

(ii) d(x, y) = d(y, x);

(iii) d(x, y) ≤ d(x, u) + d(u, v) + d(v, y).

Then, (X, d) is called a generalized metric space (or g.m.s. for short).

Definition 2.2. [16] Let (X, d) be a g.m.s., {xn}n∈N be a sequence in X and

x ∈ X. We say that {xn}n∈N is convergent to x if and only if d(xn, x) −→ 0 as

n −→ ∞.

Definition 2.3. [16] Let (X, d) be a g.m.s. We say that (X, d) is complete if

and only if every Cauchy sequence in X converges to some element in X.

Lemma 2.1. [15] Let (X, d) be a g.m.s. and {xn}n∈N be a Cauchy sequence in

(X, d) such that d(xn, x) −→ 0 as n −→ ∞ for some x ∈ X. Then d(xn, y) −→
d(x, y) as n −→ ∞ for all y ∈ X. In particular, {xn}n∈N does not converge to y if

y ̸= x.

Definition 2.4. [30] Let (X,d) be a metric space and let T be a self-mapping on

X. We say that T is a Banach contraction if for all x, y ∈ X, there exists λ ∈ [0, 1)

such that

d(Tx, Ty) ≤ λd(x, y).

Definition 2.5. [30] Let (X,d) be a metric space and let T be a self-mapping on

X. We say that T is a Kannan contraction if for all x, y ∈ X, there exists γ ∈ [0, 1
2
)

such that

d(Tx, Ty) ≤ γ[d(x, Tx) + d(y, Ty)].
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Definition 2.6. [38] Let (X,d) be a metric space and let T be a self-mapping

on X. We say that T is a Suzuki contraction if for all x, y ∈ X,

1

2
d(x, Tx) < d(x, y) ⇒ d(Tx, Ty) < d(x, y).

Definition 2.7. [30] Let (X,d) be a metric space and let T be a self-mapping

on X. We say that T is a Chatterjea contraction if for all x, y ∈ X, there exists

γ ∈ [0, 1
2
) such that

d(Tx, Ty) ≤ γ[d(x, Ty) + d(y, Tx)].

Definition 2.8. [30] Let (X, d) be a metric space and let T be a self mapping

on X. We say that T is a Hardy-Rogers contraction if for all x, y ∈ X, we have

d(Tx, Ty) ≤ α1d(x, y) + α2d(x, Tx) + α3d(y, Tx) + α4d(y, Ty) + α5d(x, Ty),

where
∑4

i=1 αi + α5 = 1.

Definition 2.9. [30] Let (X,d) be a metric space and let T be a self-mapping

on X. We say that T is a Ćirić contraction if for all x, y ∈ X, we have

d(Tx, Ty) ≤ α1d(x, y) + α2d(x, Tx) + α3d(y, Ty) + α4[d(x, Ty) + d(y, Tx)],

where
∑3

i=1 αi + 2α4 < 1.

Definition 2.10. [30] Let X be a nonempty set and let s ≥ 1 be a given real

number. A function d : X×X −→ [0,+∞) is a b-metric on X if, for all x, y, z ∈ X,

the following assertions hold:

(b1) d(x, y) = 0 if and only if x = y;

(b2) d(x, y) = d(y, x);

(b3) d(x, z) ≤ s[d(x, y) + d(y, z)].

In this case, the pair (X,d) is called a b-metric space.

Definition 2.11. [1] For a non-empty set X and a mapping θ : X × X −→
[0,+∞). We say that a function de : X × X −→ [0,+∞) is called an extended

b-metric (in short, de-metric) if it satisfies:

(i) de(x, y) = 0 if and only if x = y;

(ii) de(x, y) = de(y, x);

(iii) de(x, y) ≤ θ(x, y)[de(x, z) + de(z, y)],

for all x, y, z ∈ X. Then, (X, de) is a de-metric space.

Remark 2.12. It is clear that in the case of θ(x, y) = s, for s ≥ 1, the extended

b-metric becomes the standard b-metric.

Definition 2.13. [25] Let (X,⪯) be an ordered set and let d be a metric on

X. Then we say that the tripled (X,⪯, d) is an ordered metric space. If (X, d) is

complete, then (X,⪯, d) is called an ordered complete metric space.
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Definition 2.14. [2] Let Rm be the set of m×1 real matrices, X be a nonempty

set and d : X×X −→ Rm be a mapping. (X, d) is said to be a vector-valued metric

space if the following properties are satisfied: for all x, y, z ∈ X, we have

(i) d(x, y) = 0 if and only if x = y;

(ii) d(x, y) = d(y, x);

(iii) d(x, y) ⪯ d(x, z) + d(z, y);

where 0 is the zero m× 1 matrix and ⪯ is the coordinate-wise ordering on Rm.

Definition 2.15. [36] A self-mapping T on a metric space (X, d) is said to be a

Picard operator if it has a unique fixed point z ∈ X and z = lim
n→∞

T nx for all x ∈ X.

Definition 2.16. [29] An operator T : X −→ X is called a BanachG-contraction

or simply G-contraction if:

(a) T preserves edges of G; that is, for each x, y ∈ X with (x, y) ∈ E(G),

we have (T (x), T (y)) ∈ E(G);

(b) T decreases weights of edges of G; that is, there exists k ∈ [0, 1) such that

for all x, y ∈ X with (x, y) ∈ E(G), we have d(T (x), T (y)) ≤ kd(x, y).

Definition 2.17. [41] Let X be a non-empty set and let G : X×X×X −→ R+

be a mapping satisfying:

(G1) G(x, y, z) = 0 if x = y = z;

(G2) 0 < G(x, x, y) for all x, y ∈ X with x ̸= y;

(G3) G(x, x, y) ≤ G(x, y, z), for all x, y, z ∈ X with z ̸= y;

(G4) G(x, y, z) = G(x, z, y) = G(y, x, z) = . . . (symmetry in all three variables);

(G5) G(x, y, z) ≤ G(x, a, a) + G(a, y, z), for all x, y, z, a ∈ X (rectangle inequal-

ity).

Then the mapping G is called a generalized metric, or more specifically, a G-

metric on X, and the pair (X,G) is called a G-metric space.

Definition 2.18. [11] Let X be a nonempty set. A nonempty subset R of X2 is

said to be a binary relation on X. Accordingly, for x, y ∈ X with (x, y) ∈ R, we say

that x is related to y or x relates to y under R. Sometimes, we write xRy instead

of (x, y) ∈ R. If (x, y) ̸= R, we say x is not related to y. If xRy, yRz implies xRz,
then R is called transitive.

Definition 2.19. [11] A binary relation R on X is said to be T -closed if, for

any x, y ∈ X, (x, y) ∈ R implies (T (x), T (y)) ∈ R.

Definition 2.20. [11] A sequence {xn} ⊆ X is calledR-preserving if (xn, xn+1) ∈
R ∀n ∈ N. It is called R-preserving Cauchy sequence if it is a Cauchy sequence and

(xn, xn+1) ∈ R, for all n ∈ N.

Definition 2.21. [11] Let (X, d) be a metric space and R a binary relation on

X.
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(i) R is called d-self-closed if, for any R-preserving sequence {xn} converging

to x, there exists a subsequence {xnk
} ⊆ {xn} with (xnk

, x) ∈ R.

(ii) (X, d) is called R-complete if every R-preserving Cauchy sequence in X

converges in X.

(iii) A mapping T : X −→ X is called R-continuous at x ∈ X if for any R-

preserving sequence {xn} converging to x, we have Txn −→ Tx. Moreover,

T is R-continuous on X if it is R-continuous at each point of X.

Definition 2.22. [24] A partial metric on a nonempty set X is a mapping

p : X ×X −→ R+ such that, for all x, y, z ∈ X:

(P1) x = y if and only if p(x, x) = p(y, y) = p(x, y);

(P2) p(x, x) ≤ p(x, y);

(P3) p(x, y) = p(y, x);

(P4) p(x, z) ≤ p(x, y) + p(y, z)− p(y, y).

The pair (X, p) is called a partial metric space.

Definition 2.23. [26] Let (X, d,⪯) be a partially ordered metric space. Assume

f, g : X −→ X are two mappings. Then,

(i) x, y ∈ X are said to be comparable if x ⪯ y or y ⪯ x holds.

(ii) f is said to be nondecreasing if x ⪯ y implies fx ⪯ fy.

(iii) f, g are called weakly increasing if fx ⪯ gfx and gx ⪯ fgx for all x ∈ X.

(iv) f is called weakly increasing if f and I are weakly increasing, where I is

denoted as the identity mapping on X.

Definition 2.24. [8] Let T be a self mapping on X and let α : X × X −→
[0,+∞) be a function. We say that T is an α-admissible mapping if

x, y ∈ X, α(x, y) ≥ 1 ⇒ α(Tx, Ty) ≥ 1.

Definition 2.25. [8] Let T be a self mapping onX and α, η : X×X −→ [0,+∞)

be two functions. We say that T is an α-admissible mapping with respect to η if

x, y ∈ X, α(x, y) ≥ η(x, y) ⇒ α(Tx, Ty) ≥ η(Tx, Ty).

Note that if we take η(x, y) = 1, then this definition reduces to Definition 2.25.

Also, if we take α(x, y) = 1, then we say that T is an η-subadmissible mapping.

Definition 2.26. [34] A self mapping T on a metric space (X, d) is called ex-

pansive mapping if for all x, y ∈ X, there exists k ∈ (1,+∞) such that

d(Tx, Ty) ≥ kd(x, y).

Definition 2.27. [30] Let (X, d) be a metric space. Let α : X ×X −→ [0,∞)

and T : X −→ X be mappings. We say that T is an α-continuous mapping on (X,d)

if, for given x ∈ X and sequence {xn} with α(xn, xn+1) ≥ 1 for all n ∈ N, xn −→ x

as n→ ∞ yields that Txn −→ Tx.
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Definition 2.28. [8] Let (X, d) be a metric space. Let α, η : X×X −→ [0,+∞)

and T : X −→ X be mappings. Then we say that T is an α-η continuous mapping

on (X, d), if for given x ∈ X and sequence {xn} with

xn −→ x as n −→ ∞, α(xn, xn+1) ≥ η(xn, xn+1) ∀n ∈ N ⇒ Txn −→ Tx.

A mapping T : X −→ X is called orbitally continuous at p ∈ X if limn→∞ T nx =

p implies that limn→∞ TT nx = Tp. The mapping T is orbitally continuous on X if

T is orbitally continuous for all p ∈ X.

Remark 2.29. [8] T : X −→ X be a self mapping on an orbitally T complete

metric space X. Define α, η : X ×X −→ [0,+∞) by

α(x, y) =

{
3 if x, y ∈ O(w), and η(x, y) = 1;

0 otherwise,

where O(w) is an orbit of a point w ∈ X. If T : X −→ X is an orbitally continuous

map on (X, d), then T is α-η continuous on (X, d).

Definition 2.30. [27] Let (X, d) be a metric space and A0 ̸= ∅. We say that

the pair (A,B) has the weak P -property if{
d(x1, y1) = d(A,B);

d(x2, y2) = d(A,B) ⇒ d(x1, x2) ≤ d(y1, y2),

for all x1, x2 ∈ A and y1, y2 ∈ B.

Definition 2.31. [27] Let (X, d) be a metric space and A,B be two subsets of

X. A non-self mapping T : A −→ B is called α-proximal admissible if
α(x1, x2) ≥ 1;

d(u1, Tx1) = d(A,B);

d(u2, Tx2) = d(A,B) ⇒ α(u1, u2) ≥ 1,

for all x1, x2, u1, u2 ∈ A, where α : A× A −→ [0,∞).

Definition 2.32. [30] Let (X, d) be a metric space and let T be a self-mapping

on X. We say that T is a Hardy-Rogers contraction if for all x, y ∈ X, we have

d(Tx, Ty)

≤ α1d(x, y) + α2d(x, Tx) + α3d(y, Tx) + α4d(y, Ty) + α5d(x, Ty)

where
∑3

i=1 α1 + 2α4 < 1.

Definition 2.33. [6] Let X be a nonempty set. An S-metric on X is a mapping

S : X3 −→ [0.∞) that satisfies the following conditions: for each x, y, z, a ∈ X,

(S1) S(x, y, z) ≥ 0;

(S2) S(x, y, z) = 0 if and only if x = y = z;
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(S3) S(x, y, z) ≤ S(x, x, a) + S(y, y, a) + S(z, z, a).

Then, the pair (X,S) is called an S-metric space.

Definition 2.34. [6] Let (X,S) be an S-metric space.

(i) A sequence {xn} ⊂ X is said to converge to x ∈ X if S(xn, xn, x) −→ 0

as n −→ ∞. That is, for each ϵ > 0, there exists n0 ∈ N such that for all

n ≥ n0, we have S(xn, xn, x) < ϵ. We write xn −→ x for brevity.

(ii) A sequence {xn} ⊂ X is called Cauchy sequence if S(xn, xn, nm) −→ 0 as

n,m −→ ∞. That is, for each ϵ > 0, there exists n0 ∈ N such that for all

n,m ≥ n0, we have S(xn, xn, x) < ϵ.

(iii) The S-metric space (X,S) is said to be complete if every Cauchy sequence

is a convergent sequence.

Lemma 2.2. [6] Let (X,S) be an S-metric space. If xn −→ x and yn −→ y,

then, S(xn, xn, yn) −→ S(x, x, y).

Definition 2.35. [40] Let A,B be two nonempty subsets of a metric space

(X, d). A mapping T : A −→ B is said to be a Geragthy-contraction if there exists

β ∈ X such that, for any x, y ∈ A, d(Tx, Ty) ≤ β(d(x, y))d(x, y),

where X denote the set of functions β : [0,∞) −→ [0, 1) satisfying:

β(tn) → 1 ⇒ tn → 0.

Definition 2.36. [43] Let (X, d) be a metric space and T : X −→ X be a

mapping. T is said to be a Chatterjea contraction if there exists k ∈ (0, 1) such that

for all x, y ∈ X, the following inequality holds:

d(Tx, Ty) ≤ k(d(x, Ty) + d(y, Tx)).

Definition 2.37. [43] Let (X, d) be a metric space and T : X −→ X be a

mapping. T is said to be a weakly Chatterjea contraction if for all x, y ∈ X, the

following inequality holds:

d(Tx, Ty) ≤ 1

2
(d(x, Ty) + d(y, Tx))− ψ(d(x, Ty), d(y, Tx)),

where ψ : [0,+∞)2 −→ [0,+∞) is a continuous function such that ψ(x, y) = 0 if

and only if x = y = 0.

Recall that T : X → X is said to be a non-decreasing mapping if x ≤ y ⇒ Tx ≤
Ty for all x, y ∈ X. Consistent with Jleli and Samet [16], we denote by Θ the set

of functions θ : (0,∞) −→ (1,∞) satisfying the following conditions:

(Θ1) θ is non-decreasing: that is for all x, y ∈ (0,∞), if x ≤ y, then θ(x) ≤ θ(y);

(Θ2) for each sequence {tn} ⊂ (0,∞), limn→∞ θ(tn) = 1 if and only if limt→∞(tn) =

0+;

(Θ3) there exist r ∈ (0, 1) and l ∈ (0,∞] such that limt→0+
θ(t)−1

tr
= ℓ.
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Example 2.38. [16] Let θ : (0,∞) −→ (1,∞) be defined by

(1) θ(t) := e
√
t.

(2) θ(t) := e
√
tet .

(3) θ(t) := 2− 2
π
arctan( 1

tα
), 0 < α < 1, t > 0.

Then (1)-(3) satisfy all the properties of Θ.

Definition 2.39. [16] Let (X, d) be a g.m.s. A mapping T : X −→ X is called

θ-contraction if there exist θ ∈ Θ and k ∈ (0, 1) such that

for all x, y ∈ X, d(Tx, Ty) ̸= 0 ⇒ θ(d(Tx, Ty)) ≤ [θ(d(x, y))]k. (1)

The first fixed point result in θ-contraction was obtained in 2014 by Jleli and

Samet[16]. It was shown that a self-mapping T on a complete generalized-metric

space satisfying certain contractive conditions has a unique fixed point.

Theorem 2.3. [16] Let (X, d) be a complete g.m.s. and T : X −→ X be a given

map. Suppose that there exit θ ∈ Θ and k ∈ (0, 1) such that (1) holds. Then, T has

a unique fixed point.

Proof. Let x ∈ X be an arbitrary point in X. If for some p ∈ N, we have

T Px = T p+1x, then T px will be a fixed point of T . So, without restriction of the

generality, we can suppose that d(T nx, T n+1x) > 0 for all n ∈ N. From (1), for all

n ∈ N, we have

θ(d(T nx, T n+1x)) ≤ [θ(d(T n−1x, T nx))]k

≤ [θ(d(T n−2x, T n−1x))]k
2

≤ · · · ≤ [θ(d(T nx, T n+1x))]k
n

.

Thus, we have

1 ≤ θ(d(T nx, T n+1x)) ≤ [θ(d(x, Tx))]k
n

for all n ∈ N. (2)

Letting n −→ ∞ in (2), we obtain

θ(d(T nx, T n+1x)) → 1 as n −→ ∞,

which implies from (Θ2) that

lim
n→∞

d(T nx, T n+1x) = 0. (3)

From condition (Θ3), there exist r ∈ (0, 1) and ℓ ∈ (0,∞] such that

lim
n→∞

θ(d(T nx, T n+1x))− 1

[d(T nx, T n+1x)]r
= ℓ.
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Suppose that ℓ < ∞. In this case, let B = ℓ
2
> 0. From the definition of the

limit, there exists n0 ∈ N such that∣∣∣∣θ(d(T nx, T n+1x))− 1

d(T nx, T n+1x)r
− ℓ

∣∣∣∣ ≤ B for all n ≥ n0.

This implies that

θ(d(T nx, T n+1x))− 1

d(T nx, T n+1x)r
≥ ℓ−B = B, for all n ≥ n0.

Then,

n[d(T nx, T n+1x)]r ≤ An[θ(d(T nx, T n+1x))− 1],

for all n ≥ n0, where A = 1
B
. Suppose now that ℓ = ∞. Let B > 0 be an arbitrary

positive number. From the definition of the limit, there exists n0 ∈ N such that

θ(d(T nx, T n+1x))− 1

(d(T nx, T n+1x)]r
≥ B, for all n ≥ n0.

This implies that

n[d(T nx, T n+1x)]r ≤ An[θ(d(T nx, T n+1x))− 1], for all n ≥ n0,

where A = 1
B
. Thus, in all cases, there exist A > 0 and n0 ∈ N such that

n[d(T nx, T n+1x)]r ≤ An[θ(d(T nx, T n+1x))− 1], for all n ≥ n0.

Using (2), we obtain

n[d(T nx, T n+1x)]r ≤ An([θ(d(T nx, T n+1x))]k
n − 1), for all n ≥ n0.

Letting n→ ∞ in the above inequality, we obtain

lim
n→∞

n[d(T nx, T n+1x)]r = 0.

Thus, there exists n1 ∈ N such that

d(T nx, T n+1x) ≤ 1

n
1
r

, for all n ≥ n1. (4)

Now, we shall prove that T has a periodic point. Suppose that it is not the case,

then T nx ̸= Tmx, for every n,m ∈ N such that n ̸= m. Using (1), we obtain

θ(d(T nx, T n+2x)) ≤ [θ(d(T n−1x, T n+1x))]k

≤ [θ(d(T nx, T n+1x))]k
2

≤ · · · ≤ [θ(d(T nx, T n+1x))]k
n

.

Letting n −→ ∞ in the above inequality and using (Θ2), we obtain

lim
n→∞

d(T nx, T n+2x) = 0. (5)
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Similarly, from condition (Θ3), there exists n2 ∈ N such that

d(T nx, T n+1x) ≤ 1

n
1
r

, for all n ≥ n2. (6)

Let N = max{n0, n1}. We consider two cases.

Case 1. If m > 2 is odd, then writing m = 2l+1, l ≥ 1. Using (4), for all n ≥ N ,

we obtain

d(T nx, T n+mx) ≤d(T nx, T n+1x) + d(T n+1x, T n+2x) + · · ·+ d(T n+2lx, T n+2l+1x)

≤ 1

n
1
r

+
1

(n+ 1)
1
r

+ · · ·+ 1

(n+ 2l)
1
r

≤
∞∑
i=n

1

i
1
r

.

Case 2. If m > 2 is even, then writing m = 2l, l ≥ 2. Using (4) and (6), for all

n ≥ N , we obtain

d(T nx, T n+mx) ≤d(T nx, T n+2x) + d(T n+2x, T n+3x) + · · ·+ d(T n+2l−1x, T n+2lx)

≤ 1

n
1
r

+
1

(n+ 2)
1
r

+ · · ·+ 1

(n+ 2l − 1)
1
r

≤
∞∑
i=n

1

i
1
r

.

Thus, combining all the cases, we have

d(T nx, T n+mx) ≤
∞∑
i=n

1

i
1
r

for all n ≥ N,m ∈ N.

From the convergence of the series
∑

i
1

i
1
r
(since 1

r
> 1), we deduce that T nx is

a Cauchy sequence. Since (X, d) is complete, there is z ∈ X such that T nx −→ z.

On the other hand, observe that T is continuous, indeed, if Tx ̸= Ty, then we have

from (1)

ln[θ(d(Tx, Ty))] ≤ k ln[θ(d(x, y))] ≤ ln[θ(d(x, y))],

which implies from (Θ1) that

d(Tx, Ty) ≤ d(x, y), for all x, y ∈ X.

From this observation, for all n ∈ N, we have

d(T n+1x, Tz) ≤ d(T nx, z).

Letting n −→ ∞ in the above inequality, we get T n+1 −→ Tz. And so z = Tz,

which is a contradiction with the assumption: T does not have a periodic point.
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Thus T has a periodic point, say z, of period q. Suppose that the set of fixed points

of T is empty. Then we have

q > 1 and d(z, Tz) > 0.

Using (1), we obtain

θ(d(z, Tz)) = θ(T nz, T n+1z) ≤ [θ(d(z, Tz))]k
n

< θ(d(z, Tz)),

which is a contradiction. Thus, the set of fixed points of T is non-empty, that is, T

has at least one fixed point. Now, suppose that z, u ∈ X are two fixed points of T

such that d(z, u) = d(Tz, Tu) > 0. Using (1), we obtain

θ(d(z, u)) = θ(d(Tz, Tu)) ≤ [θ(d(z, u))]k < θ(d(z, u)),

which is a contradiction. Hence, u = z. □

Consequence of Theorem 2.3 is that, if (X, d) is a complete metric space and

T : X −→ X is a given mapping, and suppose that there exist k ∈ (0, 1) and θ ∈ Θ

such that (1) hold. Then, the fixed point of T is unique.

It follows immediately that the Banach contraction principle is sustained. That is,

if T is a Banach contraction, there exists k ∈ (0, 1) such that

d(Tx, Ty) ≤ kd(x, y), for all x, y ∈ X,

then we have

ed(Tx,Ty) ≤ [ed(x,y)]k,

which is equivalent to (1) with θ(t) = et.

3. Sequent of Jleli and Samet’s Result

In this section, we highlight some of the important extensions of the results of

Jleli and Samet [16]. One of the earliest generalizations was given by Jleli et al [15].

3.1. Jleli, Karapınar and Samet (2014). Consistent with Jleli and Samet

[16], Jleli et al. [15] introduced a new auxillary condition to the set of function

θ : (0,∞) → (1,∞) satisfying:

(Θ4) θ is continuous.

Subsequently, Ω denote the set of functions satisfying Θ1,Θ2 and Θ4.

Theorem 3.1. [15] Let (X, d) be a complete g.m.s and T : X −→ X be a given

map. Suppose that there exist θ satisfying (Θ1)− (Θ4) and k ∈ (0, 1), such that

x, y ∈ X, d(Tx, Ty) ̸= 0 ⇒ θ(d(Tx, Ty)) ≤ [θ(M(x, y))]k, (7)

where

M(x, y) = max{d(x, y), d(x, Tx), d(y, Ty)}.

Then T has a unique fixed point.



46 PAUL OLOCHE AND MOHAMMED SHEHU SHAGARI

It is easy to check the fact that every θ-contraction (1) satisfies (7). Infact,

suppose (1) holds. Then, by applying condition (Θ1), for all x, y ∈ X, we have

d(Tx, Ty) ̸= 0 implies

θ(d(Tx, Ty)) ≤ [θ(d(x, y))]k,

≤ [θ(M(x, y))]k,

where k ∈ (0, 1).

3.2. Parvaneh, Golkarmanesh, Hussain and Salimi (2016). Parvaneh et

al. [31] modify the auxiliary conditions by introducing a new family of function in

this way:

Let ∆H denote the set of all functions H : R+4 −→ [0,∞) satisfying:

(G) for all t1, t2, t3, t4 ∈ R+ with t1t2t3t4 = 0 there exists k ∈ [0, 1) such that

H(t1, t2, t3, t4) = k.

The authors also denote by ∆θ the set of functions θ : (0,∞) −→ [1,∞) satisfying

the following conditions:

(Θ1) θ is strictly increasing: that is, if x < y then θ(x) < θ(y) for all x, y ∈ (0,∞);

(Θ2) for all sequence {tn} ⊂ (0,∞), limn→∞ θ(tn) = 1 if and only if limt→∞(tn) =

0+;

(Θ3) there exist 0 < r < 1 and l ∈ (0,∞] such that lim
t→0+

θ(t)− 1

tr
= ℓ.

Definition 3.1. [31] Let (X, d) be a metric space and T a self mapping on X.

Also, suppose that α, η : X × X −→ [0,∞) is a function. We say that T is α-η-

Hθ-contraction if for all x, y ∈ X with η(x, Tx) ≤ α(x, y) and d(Tx, Ty) > 0, we

have

θ(d(Tx, Ty)) ≤ [θ(d(x, y))]H(d(x,Tx),d(y,Ty),d(x,Ty)d(y,Tx)), (8)

where H ∈ ∆H and θ ∈ ∆θ.

Obviously, by defining the mapping H : R+4 −→ (0, 1) ⊂ [0,∞) as H(t) = k for

all t ∈ R+4. Then (8) reduces to (1).

Theorem 3.2. [31] Let (X, d) be a complete metric space. Let T : X → X be a

self-mapping satisfying the following assertions:

(i) T is α-admissible mapping with respect to η;

(ii) T is α-η-Hθ-contraction;

(iii) there exists x ∈ X such that α(x, Tx) ≥ η(x, Tx);

(iv) T is α-η-continuous.

Then T has a fixed point. Moreover, T has a unique fixed point when α(x, y) ≥
η(x, x) for all x, y ∈ Fix(T ).
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Definition 3.2. [31] A self mapping T is said to have the property P if Fix(T n) =

Fix(T ) for all n ∈ N.

Note that T n is the n-th iterate of the mapping T

Theorem 3.3. [31] Let (X, d) be a complete metric space and T : X → X be

an α-continuous self mapping. Assume that there exists k ∈ [0, 1) such that

θ(d(Tx, T 2x)) ≤ [θ(d(x, Tx))]k,

holds for all x ∈ X with d(Tx, T 2x) > 0, where θ ∈ ∆θ. If there exists x0 ∈ X such

that α(x, Tx) ≥ 1, then T has the property P .

We note that by putting α(x, Tx) = 1 and y = Tx for all x ∈ X, Theorem 3.3

becomes Theorem 2.3. However, Theorem 3.3 is a proper extension of Theorem 2.3.

For example see [31].

3.3. Onsod, Saleewong, Ahmad, Al-Mazrooei and Kumam (2016). On-

sod et al. [29] introduced a new type of contraction called θ-G-contraction on a

metric space endowed with a graph and established some new fixed point theorems.

Definition 3.3. [29] A graph G is connected if there is a directed path between

any two vertices and it is weakly connected if G̃ is connected, where G̃ denotes the

undirected graph obtained from G by ignoring the direction of the edges.

Definition 3.4. [29] We denote by ξ = {G : G is a directed graph with V (G) =

X and ∆ ⊆ E(G)}. A self mapping T : X → X is said to be a θ-G-contraction if

there exist θ ∈ Θ and G ∈ ξ, such that

(i) for all x, y ∈ X,

(x, y) ∈ E(G) ⇒ (Tx, Ty) ∈ E(G);

(ii) there exists some k ∈ (0, 1) such that

θ(d(Tx, Ty)) ≤ [θ(d(x, y))]k,

for all x, y ∈ X with (x, y) ∈ E(G) and Tx ̸= Ty.

Their main result is the following.

Theorem 3.4. [29] Let (X,d) be a complete metric space and T : X → X be a

self mapping. Then, the following statements are equivalent:

(i) G is weakly connected;

(ii) for any θ-G-contraction, the sequences {T nx} and {T ny} are Cauchy and

equivalent for all x, y ∈ X;

(iii) for any θ-G-contraction and a mapping T , we have card(FixT ) ≤ 1.

Note: card(FixT ) is the cardinality of the fixed point of T .
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3.4. Liu, Chang, Xiao and Zhao (2016). Liu et al. [23] introduced the

notions of θ-type Suzuki contractions and they established some new fixed point

theorems for these two kinds of mappings in the setting of complete metric spaces.

We denote by Θ′ the set of function θ : (0,∞) → (1,∞) satisfying the following

conditions:

(Θ′
1) θ is non-decreasing and continuous;

(Θ′
2) inf

t∈(0,∞)
θ(t) = 1.

Definition 3.5. [23] Let (X, d) be a complete metric space and T : X → X be

a mapping. T is said to be a θ-type suzuki contraction, if there exist k ∈ (0, 1) and

θ ∈ Θ′ such that for all x, y ∈ X with Tx ̸= Ty,

1

2
d(x, Tx) < d(x, y) ⇒ θ(d(Tx, Ty)) ≤ [θ(M(x, y))]k,

where

M(x, y) = max

{
d(x, y), d(x, Tx), d(y, Ty),

1

2
d(x, Ty), d(y, Tx)

}
.

Without much difficulties, we can verify easily that every θ-contraction (1) satis-

fies θ-type Suzuki contraction (3.5). To see this, suppose (1) holds, then by applying

(Θ1) for all x, y ∈ X, we have 1
2
d(x, Tx) < d(x, y) and this implies that

θ(d(Tx, Ty)) ≤ [θ(d(x, y))]k ≤ [θ(M(x, y))]k,

where

M(x, y) = max

{
d(x, y), d(x, Tx), d(y, Ty),

1

2
d(x, Ty), d(y, Tx)

}
.

We now state the main theorem of [23].

Theorem 3.5. [23] Let (X, d) be a complete metric space and T : X → X be

a θ-type Suzuki contraction, i.e., there exist θ ∈ Θ′ and k ∈ (0, 1) such that for all

x, y ∈ X with Tx ̸= Ty,

1

2
d(x, Tx) < d(x, y) ⇒ θ(d(Tx, Ty)) ≤ [θ(M(x, y))]k,

where

M(x, y) = max

{
d(x, y), d(x, Ty), d(y, Ty),

1

2
d(x, Ty), d(y, Tx)

}
.

Then, T nx converges to z.
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3.5. Parvaneh (2017). Parvaneh [30] introduced a new class of control func-

tions and the concept of α-θ-generalized Hardy-Rogers contraction and established

some fixed point result in the setting of b-metric spaces. We denote by ∇θ the set

of functions θ : [0,∞) −→ [1,∞) satisfying the following condition:

(i) θ is strictly increasing;

(ii) lim sup
n→∞

θ(xn) = θ(lim sup
n→∞

xn) for real sequence {xn} ⊆ [0,∞).

Definition 3.6. [30] Let (X, d) be a b-metric space and T be a self-mapping

on X. Also suppose that α : X ×X → [0,∞) be a function. We say that T is an

α-θ-weakly Hardy-Rogers contraction if for all x, y ∈ X with 1 ≤ α(x, y), we have

θ(s4d(Tx, Ty))

≤
[
θ(α1d(x, y) + α2d(x, Tx) + α3d(y, Tx) + α4d(y, Ty + α5d(x, Ty)

− ψ(d(x, y), d(x, Tx), d(y, Tx), d(y, Ty), d(x, Ty)))

]k
,

where s ≥ 1 is a constant, ψ : [0,∞)5 → [0,∞) is a function such that ψ(a, b, c, d, e) =

0 yields that a=b=c=d=e=0 and

lim inf
n→∞

ψ(an, bn, cn, dn, en) = ψ(lim inf
n→∞

an, lim inf
n→∞

bn, lim inf
n→∞

cn, lim inf
n→∞

dn, lim inf
n→∞

en),

k ∈ [0, 1),
∑4

i=1 ai + 2sa5 = 1 and θ ∈ ∇θ.

Theorem 3.6. [30] Let (X, d) be an α-complete b-metric space and T : X → X

be a self-mapping such that the following assertions hold:

(i) T is a rectangular α-admissible mapping;

(ii) T is an α-θ-weakly Hardy-Rogers-contraction;

(iii) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1;

(vi) T is α-continuous.

Then T has a fixed point. Moreover, T has a unique fixed point when α(x, y) ≥ 1

for all x, y ∈ Fix(T ).

3.6. Hussain, Al-Mazrooei and Ahmed (2017). Hussain et al. [8] defined

(α-η)-θ contraction to the result of Jleli and Samet [16], they also deduced certain

fixed and periodic point result for obitally continuous generalized θ-contraction.

Definition 3.7. [8] Let (X, d) be a metric space and T be a self mapping on

X. Also, suppose that α, η : X ×X −→ [0,∞) be two functions. We say that T is

α-η-θ-contraction if for all x, y ∈ X with η(x, Tx) ≤ α(x, y) and d(Tx, Ty) > 0, we

have

θ(d(Tx, Ty)) ≤ [θ(d(x, y))]k,

where θ ∈ Ω and k ∈ (0, 1).



50 PAUL OLOCHE AND MOHAMMED SHEHU SHAGARI

Theorem 3.7. [8] Let (X, d) be a complete metric space. Let T : X −→ X be a

self-mapping satisfying the following assertions:

(i) T is α-admissible mapping with respect to η;

(ii) T is α-η-θ-contraction;

(iii) there exists x0 ∈ X such that α(x0, Tx0) ≥ η(x0, Tx0);

(iv) T is α-η-continuous.

Then T has a fixed point. Moreover, T has a unique fixed point when α(x, y) ≥
η(x, x) for all x, y ∈ Fix(T ).

Theorem 3.8. [8] Let (X, d) be a complete metric space and T : X −→ X be

an α-continuous self mapping. Assume that there exists k ∈ (0, 1) such that

θ(d(Tx, T 2x)) ≤ [θ(d(x, Tx))]k, (9)

holds for all x ∈ X with d(Tx, T 2x) > 0 where θ ∈ Ω. If T is an α-admissible

mapping and there exists x0 ∈ X such that α(x0, Tx0) ≥ 1, then T has a the

property P .

We clearly see that Theorem 3.8 and Theorem 3.3 are the same but while θ

is nondecreasing in 3.8, θ is strictly increasing in Theorem 3.3. And by putting

α(x, Tx) = 1 and y = Tx for all x ∈ X, their inequality both reduces to (1).

3.7. Zheng, Cai and Wang (2017). Zheng et al. [42] introduced the notions

of θ-ϕ contraction and define θ-ϕ Suzuki and θ-ϕ kannan contraction and established

some new fixed point theorems for these mappings in the setting of complete metric

spaces.

We denote by Φ the set of functions ϕ : [1,∞) → [1,∞) satisfying the following

conditions:

(Φ1) ϕ : [1,∞) → [1,∞) is nondecreasing;

(Φ2) For each t > 1, limn→∞ ϕn(t) = 1;

(Φ3) ϕ is continuous on [1,∞).

Lemma 3.9. [42] If ϕ ∈ Φ, then ϕ(1) = 1 and ϕ(t) < t for each t > 1.

Definition 3.8. [42] Let (X, d) be a metric space and T : X → X be a mapping.

(1) T is said to be a θ-ϕ contraction if there exist θ ∈ Ω and ϕ ∈ Φ such that

for any x, y ∈ X,

d(Tx, Ty) ̸= 0 ⇒ θ(d(Tx, Ty)) ≤ ϕ[θ(N(x, y))].

where N(x, y) = max{d(x, y), d(x, Tx), d(y, Ty)}.
(2) T is said to be a θ-ϕ Kannan-type contraction if there exist θ ∈ Ω and

ϕ ∈ Φ such that for any x, y ∈ X, Tx ̸= Ty,

θ(d(Tx, Ty)) ≤ ϕ

[
θ

(
d(x, Tx) + d(y, Ty)

2

)]
.
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(3) T is said to be a θ-ϕ Suzuki contraction if there exist θ ∈ Ω and ϕ ∈ Φ such

that for any x, y ∈ X, Tx ̸= Ty,

1

2
d(x, Tx) < d(x, y) ⇒ θ(d(Tx, Ty)) ≤ ϕ[θ(N(x, y))],

where N(x, y) = max{d(x, y), d(x, Tx), d(y, Ty)}.

Observe easily that θ-ϕ contractions and θ-ϕ Kannan-type contractions are θ-ϕ

Suzuki contractions.

Theorem 3.10. [42] Suppose (X,d) is a complete metric space and T : X → X

is θ-ϕ suzuki contraction, i.e, there exist θ ∈ Ω and ϕ ∈ Φ such that for any x, y ∈ X,

Tx ̸= Ty,

1

2
d(x, Tx) < d(x, y) ⇒ θ(d(Tx, Ty)) ≤ ϕ[θ(N(x, y))],

where

N(x, y) = max{d(x, y), d(x, Tx), d(y, Ty)}.

Then T has a unique fixed point x∗ ∈ X such that the sequence {T nx} converges

to x∗ for every x ∈ X.

It follows from the definition of θ-contraction and Theorem 3.10, that fixed point

theorems for θ-ϕ contraction and θ-ϕ Kannan-type contraction can be obtained. See

[42]

3.8. Minak and Altun (2017). Minak and Altun introduced the concept of

ordered θ-contraction on ordered metric spaces, where they obtained some fixed

point theorems and show some examples.

Definition 3.9. [25] We say that X is regular if for an ordered metric space

(X,⪯, d), {xn} ⊂ X is a non-decreasing sequence with xn → x in X, then xn ⪯ x

for all n.

Definition 3.10. [25] Let (X,⪯, d) be an ordered metric space. Let T : X → X

be a mapping and θ ∈ Θ. We say T is an ordered θ-contraction if there exists

k ∈ (0, 1) such that

θ(d(Tx, Ty)) ≤ [θ(d(x, y))]k, such that

for all x, y ∈ S, where

S = {(x, y) ∈ X ×X : x ⪯ y, d(Tx, Ty) > 0}.

Theorem 3.11. [25] Let (X,⪯, d) be an ordered complete metric space and let

T : X → X be an ordered θ-contraction. Suppose that T is a non-decreasing mapping

and there exists x0 ∈ X such that x0 ⪯ Tx0. If T is continuous or regular, then T

has a fixed point.
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Corollary 3.12. [25] Let (X,⪯, d) be an ordered complete metric space and let

T : X −→ X be a non-decreasing mapping such that there exists x0 ∈ X such that

x0 ⪯ Tx0. Suppose that there exists L ∈ (0, 1) such that

d(Tx, Ty)

d(x, y)
ed(Tx,Ty)−d(x,y) ≤ L < 1,

for all (x, y) ∈ S,

where

S = {(x, y) ∈ X ×X : x ⪯ y, d(Tx, Ty) > 0}.

If T is continuous or is regular, then T has a fixed point in X.

3.9. Zheng and Wang (2017). Zheng and Wang [44] used θ-ϕ-contraction to

answers the open question see [4] of the existence of contractive definitions which

are strong enough to generate a fixed point but which do not force the continuity of

T 2 at the fixed point.

Based on the functions θ ∈ Ω and ϕ ∈ Φ, we give the following definition.

Definition 3.11. [44] Let (X, d) be a metric space and T : X → X be a self

mapping. T is said to be weak θ-ϕ-contraction if there exist θ ∈ Ω and ϕ ∈ Φ such

that for any x, y ∈ X,T 2x ̸= T 2y,

θ(d(T 2x, T 2y)) ≤ ϕ[θ(N(Tx, Ty))],

where

N(Tx, Ty) = max{d(Tx, Ty), d(Tx, T 2x)d(Ty, T 2y),
1

2
d(Tx, T 2y) + d(Ty, T 2x)}.

Theorem 3.13. [44] Let (X, d) be a complete metric space and T : X → X

be a weak θ-ϕ-contraction, i.e, there exist θ ∈ Θ and ϕ ∈ Φ such that for any

x, y ∈ X,T 2x ̸= T 2y,

θ(d(T 2x, T 2y)) ≤ ϕ[θ(N(Tx, Ty))],

where

N(Tx, Ty) = max{d(Tx, Ty), d(Tx, T 2x)d(Ty, T 2y),
1

2
(d(Tx, T 2y) + d(Ty, T 2x))}.

Then, T has a unique fixed point x∗ ∈ X such that the sequence {T nx} converges

to x∗ for every x ∈ X. Moreover, T is discontinuous at x∗ iff limx→x∗ N(Tx, x∗) =

limx→x∗ N(Tx, Tx∗) ̸= 0.

3.10. Imdad, Alfaqih and Khan (2018). Imdad et al. [10] extended the

work of Jleli and Samet [16] by relaxing Θ1 thereby defining weak θ-contraction and

proved some fixed point results.

Proposition 3.14. [10] Let (X, d) be a metric space and T : X −→ X be a

mapping. If T satisfies (1) for some θ ∈ Θ2 and k ∈ (0, 1), then, T is continuous.
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Remark 3.12. [10] Observe that condition Θ1 can be withdrawn, and Theorem

2.3 still survives.

The above proposition and remark was used to define weak θ-contraction. The

definition is stated below.

Definition 3.13. [10] Let (X, d) be a metric space and T : X −→ X. We

say that T is a weak θ-contraction if there exist θ ∈ (Θ2,Θ3) or θ ∈ (Θ2, θ4) and

k ∈ (0, 1) such that

d(Tx, Ty) > 0 ⇒ θ(d(Tx, Ty)) ≤ [θ(d(x, y))]k,

for all x, y ∈ X.

Theorem 3.15. [10] Every weak θ-contraction on a complete metric space is a

Picard operator.

Theorem 3.16. Let (X, d) be a complete metric space and T : X −→ X be a

given mapping. If there exists n ∈ N such that T n is a weak θ-contraction, then T

is a Picard operator.

3.11. Hu, Zheng and Zhou (2018). Hu et al. used the notion of θ-ϕ con-

traction on partial metric spaces and establish some new fixed point theorems. They

also gave example to illustrate their result.

Based on the functions θ ∈ Ω and ϕ ∈ Φ, we give the following definition.

Definition 3.14. [7] Let (X, p) be a partial metric space and let T : X −→ X

be a mapping.

(i) T is said to be a θ-ϕ contraction if there exist θ ∈ Ω and ϕ ∈ Φ such that,

for any x, y ∈ X,

θ(p(Tx, Ty)) ≤ ϕ[θ(p(x, y))].

(ii) T is said to be θ-ϕ Kannan-type contraction if there exist θ ∈ Ω and ϕ ∈ Φ

such that, for any x, y ∈ X,Tx, ̸= Ty,

θ(p(Tx, Ty)) ≤ ϕ

[
θ

(
p(x, Tx) + p(y, Ty)

2

)]
.

Theorem 3.17. [7] Suppose (X, p) is a complete partial metric space and T :

X −→ X is a θ-ϕ contraction. Then T has a unique fixed point x∗ ∈ X such that

the sequence {T nx} converges to x∗ for every x ∈ X.

Theorem 3.18. [7] Let (X, p) is a complete partial metric space and suppose

T : X −→ X is a θ-ϕ Kannan-type contraction. Then T has a unique fixed point

x∗ ∈ X such that the sequence {T nx} converges to x∗ for every x ∈ X
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3.12. Zheng (2018). Zheng [41] introduced the notion of generalized θ-ϕ con-

traction and established some new fixed point theorems for this contraction in the

setting of complete G-metric spaces.

Based on the functions θ ∈ Ω and ϕ ∈ Φ, we give the following definition.

Definition 3.15. [41] Let (X,G) be a G-metric space. A mapping T : X −→ X

is said to be a generalized θ-ϕ contraction if there exist θ ∈ Ω and ϕ ∈ Φ, such that,

for any x, y, z ∈ X,

G(Tx, Ty, Tz) ̸= 0 ⇒ θ(G(Tx, Ty, Tz)) ≤ ϕ[θ(N(x, y, z))],

where

N(x, y, z) = max

{
G(x, y, z), G(x, Tx, Tx), G(y, Ty, Ty), G(z, Tz, Tz),

1

2
G(x, Ty, Ty),

1

2
G(y, Tz, Tz),

1

2
G(z, Tx, Tx),

1

3
(G(x, Tx, Ty),+G(y, Tz, Tz) +G(z, Tx, Tx))

}
.

Then T has a unique fixed point x∗ ∈ X such that the sequence {T nx} converges

to x∗ for every x ∈ X.

Theorem 3.19. [41] Let (X,G) be a complete G-metric space and let T : X →
X be a generalized θ-ϕ contraction. Then T has a unique fixed point x∗ ∈ X such

that the sequence {T nx} converges to x∗ for every x ∈ X.

Corollary 3.20. [41] Let (X,G) be a complete G-metric space and let T : X −→
X be a self mapping. Assume that there exist θ ∈ Ω and ϕ ∈ Φ such that, for all

x, y ∈ X.

G(Tx, Ty, Ty) ̸= 0 ⇒ θ(G(Tx, Ty, Ty)) ≤ ϕ[θ(G(x, y, y))].

Then T has a unique fixed point x∗ ∈ X such that the sequence {T nx} converges

to x∗ for every x ∈ X.

3.13. Chaipornjareansri (2018). Chaipornjareansri [6] introduced the no-

tion of generalized θ-ϕ-contraction in the setting of S-metric spaces.

Based on the functions θ ∈ Ω and ϕ ∈ Φ, we give the following definition.

Lemma 3.21. [6] Let (X,S) be an S-metric space. Then, S(x, x, y) = S(y, y, x)

for all x, y ∈ X.

Remark 3.16. [6] Let (X,S) be an S-metric space

S(x, x, z) ≤ 2S(x, x, y) + S(y, y, z),

then
1

3
S(x, x, z) ≤ max{S(x, x, y), S(y, y, z)}
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for all x, y, z ∈ X

Definition 3.17. [6] Let (X,S) be a S-metric space. A mapping T : X −→ X

is said to be a generalized θ-ϕ-contraction if there exist θ ∈ Ω and ϕ ∈ Φ such that,

for any x, y ∈ X,

S(Tx, Ty, Tz) ̸= 0 ⇒ θ(S(Tx, Ty, Tz)) ≤ ϕ[θ(N(x, y, z))],

where

N(x, y, z) =max

{
S(x, y, z), S(x, x, Tx), S(y, y, Ty), S(z, z, Tz),

1

3
S(x, x, Ty),

1

3
S(y, y, Tz),

1

3
S(z, z, Tx),

1

6

(
S(x, x, Ty) + S(y, y, Tz) + S(z, z, Tx)

)}
.

Theorem 3.22. Let (X,S) be a complete S-metric space and T : X −→ X be a

generalized θ-ϕ-contraction. Then T has a unique fixed point x∗ ∈ X such that the

sequence {T nx} converges to x∗ for every x ∈ X.

Corollary 3.23. Let (X,S) be a complete S-metric space and T : X −→ X be a

self-mapping. Assume that there exist θ ∈ Θ and ϕ ∈ Φ such that, for any x, y ∈ X,

S(Tx, Tx, Ty) ̸= 0 ⇒ θ(S(Tx, Tx, Ty)) ≤ ϕ[θ(S(x, x, y))].

Then T has a unique fixed point x∗ ∈ X such that the sequence {T nx} converges

to x∗ for every x ∈ X.

3.14. Abduljawad, Agarwal, Karapinar and Kumari (2019). Abdeljawad

et al. [1] defined three (3) new notions: Θe-contraction, a Hardy-Rogers-type Θ-

contraction and interpolative Θ-contraction in the framework of extended b-metric

space. Some fixed point result via these new notions was also studied.

Definition 3.18. A self mapping T on an extended b-metric space (X, de), is

named a Θe-contraction if there exists a function θ satisfying (Θ1)-(Θ4) such that

θ(de(Tx, Ty)) ≤ [θ(de(x, y))]
k if de(Tx, Ty) ̸= 0 for x, y ∈ X,

where k ∈ [0, 1) such that lim sup
m,n→∞

T (xn, xm) <
1

k
, here, xn = T nx0 for x0 ∈ X.

Theorem 3.24. If a self-mapping T defined on a complete extended b-metric

space (X, de) forms a Θe-contraction, then, T has a unique fixed point in X.

Definition 3.19. A self-mapping T on an extended b-metric space (X, de), is

called hardy-Rogers-type Θ-contraction (HR-Θ-contraction), if there exists a func-

tion θ satisfying (Θ1)-(Θ4) and non-negative real number k < 1 such that

θ(de(Tx, Ty)) ≤ [MT,θ(x, y)]
k,
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for all x, y ∈ X, where

MT,θ = max

{
θ(de(x, y)), θ(de(x, Tx)), θ(de(y, Ty)), θ

(
(de(x, Ty)) + de(y, Tx)

2

)}
,

where lim sup
m,n→∞

T (xn, xm) <
1

k
, here, xn = T nx0 for x0 ∈ X and k ∈ (0, 1).

Theorem 3.25. If a self-mapping T on a complete extended b-metric space

(X, de) forms on HR-Θ-contraction, then the fixed point of T in X is unique.

3.15. Altun, Hussain, Qasim and Al-Sulami (2019). Altun et al. [2] pre-

sented a new generalization of the Perov fixed point theorem on vector-valued metric

space. They presented both a nontrivial comparative example and an application

to semilinear operator system about the existence of solution.

Definition 3.20. [2] Let (X, d) be a vector-valued metric space and T : X −→
X be a map. If there exist θ ∈ Θ and k = (ki)

m
i=1 ∈ Rm

+ with ki < 1 for all

i ∈ {1, 2, . . .m} such that

θ(d(Tx, Ty)) ⪯ [θ(d(x, y))]k,

for all x, y ∈ X with d(Tx, Ty) ≻ 0, then T is called a Perov type θ-contraction.

Theorem 3.26. [2] Let (X, d) be a complete vector-valued metric space and

T : X −→ X be a perov type θ-contraction, then T has a unique fixed point.

3.16. Parvaneh, Hussain, Mukheimer and Aydi (2019). Parvaneh et al.

[32] introduced some changes to the function by denoting Θ′ the set of functions

θ : (0,∞) −→ (1,∞) such that

(Θ′
1) θ is continuous and strictly incresing;

(Θ′
2) for each sequence {tn} ⊂ (0,∞), limn→∞ θ(tn) = 1 if and only if limt→∞(tn) =

0+.

Definition 3.21. [32] Let T : X −→ X be a mapping on a metric space (X, d).

such T is said to be p-contraction, whenever there are θ ∈ Θ′ and τ1, τ2, τ3, τ4 ≥ 0

with τ1 + τ2 + τ3 + τ4 < 1 such that the following holds:

θ(d(Tx, Ty)) ≤ (θ(d(x, y)))τ1(θ(d(x, Tx)))τ2(θ(d(y, Ty)))τ3
(
θ

(
(d(x, Ty) + d(y, Tx))

2

))τ4

,

for all x, y ∈ X.

Theorem 3.27. [32] Each p-contraction mapping on a complete metric space

has a unique fixed point.

Remark 3.22. [32] In Theorem 3.34, we can substitute the continuity of θ by

the continuity of T
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Corollary 3.28. [32] By setting θ(t) = e
√
t, let T : X −→ X be a mapping on

a complete metric space (X, d) such that the following holds:

n
√
d(Tx, Ty) ≤ τ1

n
√
d(x, y) + τ2

n
√
d(x, Tx) + τ3

n
√
d(y, Ty) + τ4

n

√
(d(x, Ty) + d(y, Tx)

2
,

for all x, y ∈ X, where θ ∈ p and τ1, τ2, τ3, τ4 ≥ 0 such that τ1 + τ2 + τ3 + τ4 < 1.

Then T has a unique fixed point.

3.17. Hussain and Adeel (2019). Hussain and Adeel [9] point out some

errors and omissions in the work of Parvaneh et al. [31]. Some examples where also

given to substantiate their result.

Theorem 3.29. [9] Let (X, d) be a complete metric space and let T : X → X

be a self-mapping satisfying the following assertions:

(i) T is α-admissible mapping;

(ii) T is α-Hθ-contraction;

(iii) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1;

(iv) T is α-continuous function.

Then T has a fixed point. Moreover, T has a unique fixed point when 1 ≤ α(x, y)

for all x, y ∈ Fix(T ).

Theorem 3.30. [9] Let (X, d) be a complete metric space and T : X → X be

α-continuous self mapping. assume that there exist k ∈ [0, 1) such that

θ(d(Tx, T 2x)) ≤ [θ(d(x, Tx))]k,

holds for all x ∈ X with d(Tx, T 2x) > 0, where θ ∈ Θ. If T is an α-continuous self

mapping and there exists x0 ∈ X such that α(x0, Tx0) ≥ 1, then T has the property

P .

3.18. Zhenhua, Hussain, Adeel, Hussain and Savas (2019). The authors

[27] introduced the notion of Ćirić type α-ψ-θ-contraction and prove best proximity

result in the context of complete metric spaces and partially ordered complete metric

spaces.

We denote by Ψ the functions ψ : [0,∞) −→ [0,∞) satisfying the following

conditions:

(ψ1) ψ is nondecreasing;

(ψ2)
∑+∞

n=1 ψ
n(t) <∞ for all t > 0, where ψn is the nth iterate of ψ and ψ(t) < t

for any t > 0.

Definition 3.23. [27] Let A,B be two subsets of a metric space (X, d) and

α : X × X −→ [0,∞) be a function. A mapping F : A −→ B is said to be Ćirić
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type α-ψ-θ-contraction if for all ψ ∈ Ψ, θ ∈ Ω, there exists k ∈ (0, 1) and for all

x, y ∈ X with α(x, y) ≥ 1 and d(Tx, Ty) > 0, we have

α(x, y)θ[d(Tx, Ty)] ≤ [ψ(θ(m(x, y)))]k

where

m(x, y) = max

{
d(x, y),

d(x, Tx) + d(y, Ty)

2
− d(A,B),

d(x, Ty) + d(y, Tx)

2
− d(A,B)

}
.

Theorem 3.31. [27] Let A and B be two closed subsets of a complete metric

space (X, d) with A0 ̸= ∅ and let T : A −→ B be a Ćirić type α-ψ-θ-contraction

satisfying

(i) T is α-proximal admissible;

(ii) T (A0) ⊆ B0 and the pair (A,B) satisfies the weak P -property;

(iii) T is continuous;

(iv) there exist x0, x1 ∈ A0 with d(x1, Tx0) = d(A,B) such that α(x0, x1) ≥ 1.

Then, there exists u ∈ A such that d(u, Tu) = d(A,B).

3.19. Yesilkaya and Aydin (2020). Yesilkaya and Aydin [39] introduced the

fixed point theorem for θ-expansive mapping on ordered metric spaces.

Definition 3.24. [39] Let (X,⪯, d) be an ordered metric space. A mapping

T : X → X is said to be surjective θ-expansive if there exists θ ∈ Θ and η > 1 such

that

θ(d(Tx, Ty)) ≥ [θ(d(x, y))]η,

for all (x, y) ∈ S, where

S = {(x, y) ∈ X ×X : x ⪯ y, d(Tx, Ty) > 0}.

Theorem 3.32. [39] Let (X,⪯, d) be an ordered complete metric space, T :

X → X is surjective θ-expansive mapping and T ∗ is ⪯-increasing. Suppose that

there exists x0 ∈ X such that x0 ⪯ T ∗x0. If T is continuous or X is regular, then T

has a fixed point.

Theorem 3.33. [39] Let (X, d) be a complete metric space. Let A and B be

weakly compatible self mappings of X and B(X) ⊆ A(X). Suppose that θ ∈ Θ and

there exists a constant η ≥ 1 such that

θ(d(Ax,Ay)) ≥ [θ(d(Bx,By))]η,

for all x, y ∈ X. If one of the subspaces B(X) or A(X) is complete, then A and B

have a unique common fixed point in X.
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3.20. Imdad, Ali, Alfaqih, Sessa and Aldurayhim (2020). Imdad et al.

[11] introduced two new classes of auxiliary functions and utilizing the same to

define (θ, ψ)R-weak contractions. Also, they prove some fixed point theorems in the

setting of relational metric spaces. Some examples where also given to substantiate

their result.

Definition 3.25. [11] Let ℧ be the collection of all θ : (0,∞) −→ (1,∞) that

satisfy the following conditions:

(℧1) for every sequence {xn}n∈N ⊆ (0,∞), limn→∞(xn) = 0 if and only if

limt→∞ θ(xn) = 1;

(℧2) θ is lower semicontinuous.

Definition 3.26. [11] Let Ψ be the collection of all ψ : (0,∞) −→ (1,∞) that

satisfies the following conditions:

(Ψ1) for every sequence {xn} ⊆ (0,∞), lim
n→∞

xn = 0 iff lim
n→∞

ψ(xn) = 1;

(Ψ1) ψ is right upper semicontinuous.

Definition 3.27. [11] Let (X, d) be a metric space, R a binary relation on

X and T : X → X. Then, T is called a (θ, ψ)R-weak contraction if there exist

k ∈ (0, 1), θ ∈ ℧ and ψ ∈ Ψ with θ(t) ≥ ψ for all t > 0 such that

θ(d(Tx, Ty)) ≤ (ψ(m(x, y)))k,

where

m(x, y) = max

{
d(x, y), d(x, T (x)), d(y, T (y)),

d(x, T (y)) + d(y, T (x))

2

}
.

for all x, y ∈ X with xRy and T (x) ̸= T (y).

Theorem 3.34. [11] Let (X, d) be a metric space endowed with a transitive

binary relation R and assume that:

(i) T is R-complete;

(ii) there exists x0 ∈ X such that x0RT (x0);
(iii) R is T -closed;

(iv) T is (θ, ψ)R-weak contraction;

(v) T is R-continuous.

Then, T has a fixed point.

Theorem 3.35. [11] The conclusion of Theorem 3.34 holds true if assumption

(v) is replaced by:

(v’) R is d-self-closed.
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3.21. Kari, Rossafi, Marhrani and Aamri (2020). Kari et al. [22] pre-

sented the notion of θ-ϕ-contraction in b-rectangular metric spaces inspired by the

concept of θ-ϕ-contraction in metric spaces introduced by Zheng et al. [42] and

study the existence and uniqueness of fixed point for the mappings in the space.

Based on the functions θ ∈ Ω and ϕ ∈ Φ, we give the following definition.

Definition 3.28. [22] Let (X,d) be a b-rectangular metric space with parameter

s > 1 and T : X −→ X.

(1) T is said to be a θ-contraction if there exist θ ∈ Ω and k ∈ (0, 1) such that

d(Tx, Ty) > 0 ⇒ θ[s2d(Tx, Ty)] ≤ θ[m(x, y)]k,

where

m(x, y) = max{d(x, y), d(x, Tx), d(y, Ty), d(y, Tx)}.

(2) T is said to be a θ-ϕ-contraction if there exist θ ∈ Ω and ϕ ∈ Φ such that

d(Tx, Ty) > 0 ⇒ θ[s2d(Tx, Ty)] ≤ ϕ[θ(m(x, y))],

where

m(x, y) = max{d(x, y), d(x, Tx), d(y, Ty), d(y, Tx)}.

(3) T is said to be a θ-ϕ-Kannan-type contraction if there exist θ ∈ Θ and

ϕ ∈ Φ such that d(Tx, Ty) > 0, we have

θ[s2d(Tx, Ty)] ≤ ϕ

[
θ

(
d(x, Tx) + d(y, Ty)

2

)]
.

(4) T is said to be a θ-ϕ-Reich-type contraction if there exist θ ∈ Ω and ϕ ∈ Φ

such that d(Tx, Ty) > 0, we have

θ[s2d(Tx, Ty)] ≤ ϕ

[
θ

(
d(x, y) + d(x, Tx) + d(y, Ty)

3

)]
.

Theorem 3.36. [22] Let (X, d) be a complete b-rectangular metric space and let

T : X −→ X be a θ-contraction, i.e, there exist θ ∈ Θ and k ∈ (0, 1) such that for

any x, y ∈ X, we have

d(Tx, Ty) > 0 ⇒ θ[s2d(Tx, Ty)] ≤ [θ(m(x, y))]k.

Then T has a unique fixed point.

There are other theorems given by Kari et al. [22] with respect to the different

definitions of contractions on b-rectangular metric space given above.



A SURVEY ON Θ-CONTRACTIONS 61

3.22. Rossafi, Kari, Marhrani and Aamri (2021). Rossafi et al. [34] pre-

sented the notion of θ-ϕ-expansive mapping in complete rectangular metric spaces

and studied various fixed point theorems for such mapping. Their work extend many

exiting results in the literature.

Based on the functions θ ∈ Ω and ϕ ∈ Φ, we give the following definition.

Definition 3.29. [34] Let (X,d) be a rectangular metric space and T : X −→ X

be a given mapping. T is said to be generalized θ-ϕ-expansive mapping if there exists

two functions θ ∈ Ω and ϕ ∈ Φ such that

M(x, y) > 0 ⇒ ϕ[θ(d(Tx, Ty))] ≥ θ(M(x, y)), for all x, y ∈ X,

where

M(x, y) = min{d(x, y), d(x.Tx), d(y, Ty), d(x, Ty)}.

Theorem 3.37. [34] Let (X,d) be a (α, η)-complete generalized metric space

and T : X −→ X be a bijective generalized θ-ϕ-expansive mapping satisfying the

following conditions:

(i) T−1 is a triangular (α, η)-admissible mapping;

(ii) there exists x0 ∈ X such that α(x0, T
−1x0) ≥ 1 or η(x0, T

−1x0) ≤ 1;

(iii) T is a (α, η)-continuous.

Then, T has a fixed point.

3.23. Perveen, Alfaqih, Sessa and Imdad (2021). Perveen et al. [33]

introduced the notion of θ∗-weak contraction which was used to prove some fixed

point results.

Let θ̂ be the set of all functions θ : (0,∞) −→ (1,∞) satisfying the following

condition:

(θ̂2) for every sequence {tn} ⊂ (0,∞), limn→∞ θ(tn) = 1 ⇒ limn→∞ tn = 0.

Definition 3.30. [33] Let (X, d) be a metric space. A self mapping T on X is

said to be a θ∗-weak contraction if there exist k ∈ (0, 1) and θ ∈ θ̂, such that

x, y ∈ X, d(Tx, Ty) > 0 ⇒ θ(d(Tx, Ty)) ≤ [θ(M(x, y))]k,

where

M(x, y) = max{d(x, y), d(x, Tx), d(y, Ty)}.

Now, we state the main theorem of their result.

Theorem 3.38. [33] Let (X, d) be a complete metric space and T : X −→ X, a

θ∗-weak contraction. If θ is continuous, then

(a) T has a unique fixed point (say Z∗ ∈ X);

(b) limn→∞ T nx = z∗,∀z ∈ X.

Moreover, T is continuous at z∗ if and only if limz→z∗ d(z, z
∗) = 0.
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3.24. Javed, Arshad, Baazeem and Mlaiki (2022). Javed et al. [12] in-

troduced the notion of Rα-θ-contractions (αR-θR − contractions) and prove some

fixed point theorem in the sense of R-complete metric spaces.

Definition 3.31. [12] Let (X, d) be an R-metric space and TR : X −→ X be a

mapping. We say that TR is an αR-θR-contraction if there exists k ∈ (0, 1) and two

functions αR : X ×X −→ [0,∞) and θ ∈ Θ such that

d(Tx, Ty) ̸= 0 ⇒ αR(x, y)θ(d(Tx, Ty)) ≤ [θ(d(x, y))]k,∀x, y ∈ X with xRy.

Note that if αR(x, y) = 1, (1) is satisfied.

Definition 3.32. [12] Let TR : X −→ X and αR : X × X −→ [0,∞) be two

functions. We say that TR is αR-admissible if for all x, y ∈ X with xRy,

αR(x, y) ≥ 1 ⇒ αR(TRx, TRy) ≥ 1.

We now state the main theorem as given by Javed et al [12].

Theorem 3.39. [12] Let (X,R, d) be an R-complete metric space and TR be a

self mapping, R-preserving, R-continuous and αR : X×X −→ [0,∞) be a function.

Suppose that the below circumstances fulfill:

(i) suppose there exist k ∈ (0, 1) and a function θ ∈ Θ such that for all x, y ∈ X

with xRy,

d(Tx, Ty) ̸= 0 ⇒ αR(x, y)θ(d(Tx, Ty)) ≤ [θ(d(x, y))]k;

(ii) TR is αR-admissible;

(iii) TR is R-continuous;

(iv) there exists x0 ∈ X such that x0RTRx0 and αR(x0, TRx0) ≥ 1.

Then TR has a unique fixed point.

3.25. Onsod, Kumam and Saleewong (2023). Onsod et al. [28] introduced

the idea of Suzuki-Geraghty type θ-contraction and they established some fixed point

theorems in the setting of complete partial metric spaces.

We denote by X the family of functions β : [0,∞) −→ [0, 1) which satisfies the

following condition:

lim
n→∞

β(tn) = 1 ⇒ lim
n→∞

(tn) = 0.

Also, we denote by Θ′ the set of function θ : (0,∞) → (1,∞) satisfying the

following conditions:

(Θ′
1) θ is non-decreasing and continuous;

(Θ′
2) inft∈(0,∞) θ(t) = 1.

The authors in [28] modify the definition of Suzuki contraction, Gerathty con-

traction and θ-contraction as given bellow.
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Definition 3.33. [28] Let (X, d) be a partial metric space. A mapping T :

X −→ X is said to be Suzuki-Geraghty type θ-contraction, if there exist k ∈
(0, 1), θ ∈ Θ′ and β ∈ X such that for all x, y ∈ X with Tx ̸= Ty,

1

2
d(x, Tx) < d(x, y) ⇒ θ(d(Tx, Ty)) ≤ [θ(β(d(x, y))d(x, y))]k.

Theorem 3.40. [28] Let (X, d) be a complete partial metric space and T : X →
X be a Suzuki-Geraghty type θ-contraction, if there exist k ∈ (0, 1), θ ∈ θ′ and β ∈ X

such that for all x, y ∈ X with Tx ̸= Ty,

1

2
d(x, Tx) < d(x, y) ⇒ θ(d(Tx, Ty)) ≤ [θ(β(d(x, y))d(x, y))]k.

Then T has a unique fixed point z ∈ X.

Definition 3.34. [28] Let (X, d) be a partial metric space. A mapping T : X →
X is said to be Geraghty type θ-contraction. If there exist k ∈ (0, 1), θ ∈ θ′ and

β ∈ X such that for all x, y ∈ X with Tx ̸= Ty,

d(Tx, Ty) > 0 ⇒ θ(d(Tx, Ty)) ≤ [θ(β(d(x, y))d(x, y))]k.

Theorem 3.41. [28] Let (X, d) be a complete partial metric space and T : X →
X be a Geraghty type θ-contraction. If there exist k ∈ (0, 1), θ ∈ θ̃ and β ∈ X such

that for all x, y ∈ X with Tx ̸= Ty,

d(Tx, Ty) > 0 ⇒ θ(d(Tx, Ty)) ≤ [θ(β(d(x, y))d(x, y))]k.

Then T has a unique fixed point z ∈ X.

3.26. Rossafi, Kari, Park and Lee (2023). Rossafi et al. [35] define θ-ϕ-

contraction on b-metric space which is an extension of θ-ϕ-contraction introduced

by Zheng et al. [42]

Based on the functions θ ∈ Ω and ϕ ∈ Φ, we give the following definition.

Definition 3.35. [35] Let (X, d) be a b-metric space with parameter s > 1 and

T : X → X be a mapping.

(i) T is said to be a θ-contraction if there exist θ ∈ Ω and k ∈ (0, 1) such that

d(Tx, Ty) > 0 ⇒ θ[s3d(Tx, Ty)] ≤ θ[m(x, y)]k,

where

m(x, y) = max

{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(Tx, y)

2s2

}
.

(ii) T is said to be a θ-ϕ-contraction if there exist θ ∈ Ω and ϕ ∈ Φ such that

d(Tx, Ty) > 0 ⇒ θ[s3d(Tx, Ty)] ≤ ϕ[θ(m(x, y))],

where

m(x, y) = max

{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(Tx, y)

2s2

}
.
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(iii) T is said to be a θ-ϕ-Kannan-type contraction if there exist θ ∈ Ω and

ϕ ∈ Φ such that for all x, y ∈ X with d(Tx, Ty) > 0, we have

θ[s3d(Tx, Ty)] ≤ ϕ

[
θ

(
d(x, Tx) + d(y, Ty)

2

)]
.

(iv) T is said to be a θ-ϕ-Reich-type contraction if there exist θ ∈ Ω and ϕ ∈ Φ

such that for all x, y ∈ X with d(Tx, Ty) > 0, we have

θ[s3d(Tx, Ty)] ≤ ϕ

[
θ

(
d(x, y) + d(x, Tx) + d(y, Ty)

3

)]
.

We now state the main theorem of their work.

Theorem 3.42. [35] Let (X, d) be a complete b-metric space and T : X −→ X

be a θ-contraction, i.e, there exist θ ∈ Ω and k ∈ (0, 1) such that for any x, y ∈ X,

we have

d(Tx, Ty) > 0 ⇒ θ[s3(d(Tx, Ty))] ≤ θ[m(x, y)]k. (10)

Then T has a unique fixed point.

Rossafi et al. presented the following results as an immediate consequence of

their main theorem.

Corollary 3.43. [35] Let (X, d) be a complete b-metric space and T : X −→ X

be a given mapping. Suppose that there exist θ ∈ Ω and k ∈ (0, 1) such that for any

x, y ∈ X, we have

d(Tx, Ty) > 0 ⇒ θ[s3(d(Tx, Ty))] ≤ [θ(d(x, y))]k.

Then T has a unique fixed point.

4. Conclusion

In this manuscript, some important transformation results of θ-contraction as

introduced by Jleli and Samet [16] are surveyed. Several authors have generalized

this result in different directions. For Some of the results, the auxiliary conditions

for the set of functions Θ are relaxed while in other cases, additional auxiliary con-

ditions are introduced. We have observed therefore that the basic idea in developing

the concepts of θ-contractions and related fixed point results involved either modi-

fying the auxiliary functions, improving the contractive inequalities or changing the

ambient space.
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