[1] S. Abramovich, Quasi-arithmetic means and subquadracity, J. Math. Inequal., 9(4) (2015), 1157–1168.
[2] P. R. Beesack and J. E. Pecaric, On the Jessen’s inequality for convex functions, J. Math. Anal. 110(1985), 536–552.
[3] M. Ben Bassat, f-entropies, probability of error, and feature selection, Inf. Contr., 39 (1978), 227–242.
[4] P. S. Bullen, D. S. Mitrinovic, and P. M. Vasic, Means and their inequalities, D. Reidel Publishing Co., Dordrecht, Boston, Lancaster and Tokyo, 1987.
[5] C. H. Chen, Statistical pattern recognition, Rochelle Park, NJ: Hayden Book Co., 1973.
[6] C. K. Chow and C. N. Liu, Approximating discrete probability distributions with dependence trees, IEEE Trans. Inf. Theory, 14(3) (1968), 462–467.
[7] I. Csiszar, Information measures: A critical survey, Trans. 7th Prague Conf. on Info. Th. Statist. Decis. Funct., Random Processes and 8th European Meeting of Statist., Volume B, Academia Prague, 1978, pp. 73–86.
[8] I. Csiszar, Information-type measures of difference of probability functions and indirect observations, Studia Sci. Math. Hungar., 2 (1967), 299–318.
[9] L. Egghe and R. Rousseau, Introduction to informetrics: Quantitative methods in library, documentation and information science, Elsevier Science Publishers, New York, 1990.
[10] L. Fry Richardson, Statistics of deadly quarrels, Marcel Dekker, 1960.
[11] D. V. Gokhale and S. Kullback, Information in contingency tables, Pacific Grove, Boxwood Press 1978.
[12] L. Horvath, Weighted form of a recent refinement of the discrete Jensen’s inequality, Math. Inequal. Appl., 17(3), (2014), 947–961.
[13] L. Horvath and J. Pecaric, A refinement of the discrete Jensen’s inequality, Math. Inequal. Appl., 14(4) (2011), 777–791.
[14] E. Isaacson and H. B. Keller, Analysis of numerical methods, Dover Publications Inc., New York, 1966.
[15] S. Ivelic and J. Pecaric, Generalizations of converse Jensen’s inequality and related results, J. Math. Inequal., 5(1) (2011), 43–60.
[16] J. Jaksetic and J. Pecaric, Exponential convexity method, J. Conv. Anal., 20(1) (2013), 181–197.
[17] R. Jaksic and J. Pecaric, New converses of the Jessen and Lah-Ribariˇc inequalities II, J. Math. Inequal., 7(4) (2013), 617–645.
[18] R. Jaksic and J. Pecaric, Levinson’s type generalization of the Edmundson-Lah-Ribaric inequality, Mediterr. J. Math., 13(1) (2016), 483–496.
[19] B. Jessen, Bemaerkinger om konvekse funktioner og uligheder imellem middelvaerdier I, Mat. Tidsskrift, B (1931), 17–28.
[20] T. Kailath, The divergence and Bhattacharyya distance measures in signal selection, IEEE Trans. Commun. Technol., 15(1) (1967), 52–60.
[21] M. Krnic, R. Mikic, and J. Pecaric, Strengthened converses of the Jensen and Edmundson-Lah-Ribariˇc inequalities, Adv. Oper. Theory, 1(1) (2016), 104–122.
[22] K. Krulic Himmelreich, J. Pecaric, D. Pokaz, Inequalities of Hardy and Jensen / New Hardy type inequalities with general kernels, Monographs in inequalities 6, Element, Zagreb, 2013.
[23] J. Liang and G. Shi, Comparison of differences among power means Q_{r,α}(a, b, x)s, J. Math. Inequal., 9(2) (2015), 351–360.
[24] J. Lin and S. K. M. Wong, Approximation of discrete probability distributions based on a new divergence measure, Congur. Numeran., 61 (1988), 75–80.
[25] B. Manaris, D. Vaughan, C. S. Wagner, J. Romero, and R. B. Davis, Evolutionary music and the Zipf-Mandelbrot law: Developing fitness functions for pleasant music, Proc. 1st Eur. Workshop Evolution. Music and Art (EvoMUSART2003), 2003, pp. 522–534.
[26] R. Mikic, D. Pecaric, and J. Pecaric, Inequalities of the Jensen and Edmundson-Lah-Ribaric type for 3-convex functions with applications, J. Math. Inequal., to appear.
[27] D. Mouillot and A. Lepretre, Introduction of relative abundance distribution (RAD) indices, estimated from the rank-frequency diagrams (RFD), to assess changes in community diversity, Envir. Monitor. Assessment., 63(2) (2000), 279–295.
[28] J. Pecaric, I. Peric, and G. Roquia, Exponentially convex functions generated by Wulbert’s inequality and Stolarsky-type means, Math. Comp. Model., 55, (2012), 1849–1857.
[29] J. E. Pecaric, F. Proschan, and Y. L. Tong, Convex functions, partial orderings and statistical applications, Academic Press Inc., San Diego 1992.
[30] M. Sababheh, Improved Jensen’s inequality, Math. Inequal. Appl., 20(2) (2017), 389–403.
[31] Z. K. Silagadze, Citations and the Zipf–Mandelbrot law Complex Syst., 11 (1997), 487–499.
[32] G. K. Zipf, The psychobiology of language, Cambridge, Houghton-Mifflin, 1935.
[33] G. K. Zipf, Human behavior and the principle of least effort, Reading, Addison-Wesley, 1949.