[1] C. Alaca, D. Turkoglu, and C. Yildiz, Fixed points in intuitionistic fuzzy metric spaces, Chaos Solitons Fractals, 29 (2006), 1073–1078.

[2] M. A. Al-Thagafi and N. Shahzad, Generalized I-non expansive self-maps and invariants approximations, Acta Math. Sin., 24(5) (2008), 867–876.

[3] K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets Syst., 20 (1986), 87–96.

[4] A. Jain and B. Singh, A fixed point theorem for compatible mappings of type (A) in fuzzy metric space, Acta Ciencia Indica, 33(2) (2007), 339–346.

[5] M. Jeyaraman and D. Poovaragavan, Common fixed point theorems for weakly commuting of type (J) in generalized intuitionistic fuzzy metric spaces, Notes Intuitionistic Fuzzy Sets, 25(3) (2019), 26–41.

[6] G. Jungck, P. P. Murthy, and Y. J. Cho, Compatible mappings of type (A) and common fixed points, Math. Japon., 38 (1993), 381–390.

[7] I. Kramosil and J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetica, 11 (1975), 336–344.

[8] U. Mishra, A. Sharad Ranavide, and D. Gopal, Some fixed point theorems in fuzzy metric space, Tamkang J. Math., 39(4) (2008), 309–316.

[9] R. Pandiselvi and M. Jeyaraman, Some fixed point theorems for occasionally weakly compatible mapping in intuitionistic generalized fuzzy 2-metric spaces, Recent Trends Appl. Math., 2018, pp. 70–82.

[10] J. H. Park, Intuitionistic fuzzy metric spaces, Chaos Solitons Fractals, 22 (2004), 1039–1046.

[11] M. Rajeswari and M. Jeyaraman, Common fixed point theorem for compatible maps of type (β) in intuitionistic generalized fuzzy 2-metric spaces, Recent Trends Appl. Math., 2018, pp. 16-26.

[12] B. Schweizer and A. Sklar, Statistical metric spaces, Pacific J. Math., 10 (1960), 313–334.

[13] S. Sharma, On fuzzy metric space, Southeast Asian Bull. Math., 26 (2002), 133–145.

[14] P. L. Sharma, B.K. Sharma, and K. Iseki, Contractive type mapping on 2-metric space, Math. Japon., 21 (1976), 67–70.

[15] L. A. Zadeh, Fuzzy sets, Inf. Control, 89 (1965), 338–353.