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Abstract. Upper and lower semi-continuous functions are important in many

areas and play a key role in optimization theory. This paper characterizes the lower

and upper semi-continuity of Lp-space functions. We prove that a function ϑ : L →
R is lower semi-continuous if and only if each convergent Moore-Smith sequence

{qj}j∈N converging to q ∈ L implies that
∫
L ϑ(q)dµ ≤ lim inf

∫
L ϑ(qj)dµ,∀q ∈ L.

We further show that the sum of any two proper lower semi-continuous functions

is lower semi-continuous and the product of a lower semi-continuous function by

a positive scalar gives a lower semi-continuous function and the case of upper

semi-continuous functions follows analogously. Additionally, we prove that for a

function in an Lp-space L if ϑ(φ) =
∫
L φdµ such that φ is measurable with respect

to a Borel measure µ, then ϑ is upper semi-continuous.

1. Introduction

Lower semi-continuous functions and upper semi-continuous functions play a

crucial role in mathematical analysis and are significantly applied in optimization

and other fields of science [3]. For this reason they have been intensively studied

over time in many mathematical spaces like topological, Hilbert and general Ba-

nach spaces. Beer [1], characterized upper semi-continuous functions in compact

metric spaces and Hausdorff spaces. In [17] Dini’s uniform convergence theorem

was extended to characterize sequences of upper semi-continuous functions converg-

ing point-wise to a continuous function that converges uniformly. Gool [6] exam-

ined lower semi-continuous functions in continuous lattices. The results obtained

in Gool’s work extended some analytical properties of lsc functions to lsc functions
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whose domain is a continuous lattice[18]. Some results [7] were applied in potential

theory to describe solutions of systems of differential equations through generaliz-

ing semi-continuity of such functions. Gool’s work characterized lsc functions in

compact topological spaces but not in Lp-spaces [9].

Correa and Hantoute [4] related the argmin sets of a given function and its

semi-continuous convex hull using characterizations involving asymptotic functions.

They came up with explicit formulas for Fenchel’s sub-differential and the argmin

sets of successful Legendre-Fenchel conjugates of functions with real values. The

authors thus characterized lsc functions in real locally convex space but not in Lp-

spaces. Varagona [16] examined inverse limits with upper semi-continuous bonding

functions and decomposability providing sufficient and necessary conditions for the

bonding functions to be a decomposable/ indecomposable continuum. Chen, Cho

and Yang [2], investigated lower semi-continuous functions in real normed spaces

and real reflexive Banach spaces. They introduced the notion of lsc from above.

They used this concept to prove that Ekland’s and Coristi’s theorems hold under

semi-continuous functions and convex functions in general Banach spaces ([10], [11]

and the references therein).

Mirmostafaee [12] studied usc and lsc functions of multi-valued functions in

Baire spaces. His work on characterization of lsc and usc functions in Baire spaces

was extended to metrizable spaces [13] and second countable spaces [14] but Mir-

mostafaee did not consider examining upper and lower semi-continuity in Lp-spaces

[15]. Hernandez and Lopez [7] characterized semi-continuous functions in metriz-

able topological spaces. They showed that a function in a metrizable topological

space is lsc if its sublevel set is closed and it is usc if its sublevel set is open. The

graphical properties of semi-continuous functions were also studied where it was

proved that if the hypograph of a function is closed then the function is usc and

similarly if the epigraph of a function is closed then the function is lsc.

However limited research has been conducted in characterizing lower and upper

semi-continuity of functions in Lp-spaces. This has been attributed to the challenge

posed by intricate nature of p-norm structures and their infinite dimensions. The

Lp-spaces are interesting spaces since in these spaces we can measure the changes

in lower and upper semi-continuous functions using p-norms.

It is in the interest of this paper to characterize lower semi continuous functions

and upper semi-continuous functions in Lp-spaces.

2. Preliminaries

In this section properties of lower and upper semi-continuity which are used in

later discussion are stated and key concepts are defined. We start by defining a

special type of Banach space referred to as the Lp-space.
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Definition 2.1. [17] Let (L,X, µ) be a measure space and a number p be given

such that 1 ≤ p < ∞. Then an Lp space which consists of measurable functions

is defined as Lp(L,X, µ) = {ϑ : L → K : ϑis measurable,
∫
L |ϑ|

pdµ < ∞}. The
Lp-norm of ϑ ∈ Lp(L) is given by

∥ϑ∥p =
(∫

L
|ϑ|pdµ

) 1
p

.

In the proposition below we show that (L, ∥.∥p) is indeed an Lp-space.

Proposition 2.1. Let Lp(L,X, µ) denote an Lp-space on a measure space (L,X, µ)
with 1 ≤ p < ∞. Let ∥.∥p be an Lp norm. Then (L, ∥.∥p) is an Lp(L,X, µ)-space on

(L,X, µ).

Proof. We need to show that ∥.∥p is a norm on Lp(L,X, µ). Let ϑ be a measur-

able function in L. From the definition of Lp norm, we have, ∥ϑ∥p =
(∫

L |ϑ|
pdµ

) 1
p .

We proceed to show that ∥ϑ∥p satisfies the three axioms for a norm below:

(i). ∥ϑ∥p ≥ 0 and ∥ϑ∥p = 0 ⇐⇒ ϑ = 0. By absoluteness property, |ϑ|p ≥ 0

implying that
∫
L |ϑ|

pdµ ≥ 0, hence
(∫

L |ϑ|
pdµ

) 1
p ≥ 0 showing that ∥ϑ∥p ≥ 0.

Let ∥ϑ∥p = 0, then
(∫

L |ϑ|
pdµ

) 1
p = 0 implying that |ϑ|p = 0 hence ϑ = 0.

Conversely suppose |ϑ|p = 0, then
∫
L |ϑ|

pdµ = 0 implying that
(∫

L |ϑ|
pdµ

) 1
p =

0. Thus, ∥ϑ∥p = 0.

(ii). ∥κϑ∥p = |κ|∥ϑ∥p,∀κ ∈ K.Now ∥κϑ∥p =
(∫

L |κϑ|
pdµ

) 1
p =

(∫
L |κ|

p|ϑ|pdµ
) 1

p =

|κ|
(∫

L |ϑ|
pdµ

) 1
p . Thus, ∥κϑ∥p = |κ|∥ϑ∥p.

(iii). ∥ϑ + φ∥p ≤ ∥ϑ∥p + ∥φ∥p,∀ϑ, φ ∈ L. Let ϑ, φ ∈ L, then ∥ϑ + φ∥p =(∫
L |ϑ+ φ|pdµ

) 1
p . So by Minkowski’s inequality we have

(∫
L |ϑ+ φ|pdµ

) 1
p ≤(∫

L |ϑ|
pdµ

) 1
p +

(∫
L φ|

pdµ
) 1

p ,∀p ≥ 1. This is equivalent to ∥ϑ + φ∥p ≤
∥ϑ∥p + ∥φ∥p.

Since all axioms for a norm are satisfied we conclude that ∥.∥p is a norm on Lp(L,X, µ)
and therefore the ordered pair (L, ∥.∥p) is an Lp(L,X, µ)-space on (L,X, µ).

□

We now proceed to define the notion of semi-continuity of functions and show its

implication in continuity of functions in normed spaces.

Definition 2.2. [5] Let L be a nonempty normed space. A function ϑ : L → R
is said to be semi-continuous if it is either lower semi-continuous or upper semi-

continuous.
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Definition 2.3. [14] Let L be a normed linear space. A function ϑ : L → R is

lsc if, given a sequence {qn} ∈ L, ϑ(q) ≤ lim infn→∞ ϑ(qn) as n approaches infinity

and qn approaches q ∈ L.

Definition 2.4. [18] Let L be a normed linear space. A function ϑ : L → R is

usc if, for any sequence {qn} ∈ L, ϑ(q) ≥ lim supn→∞ ϑ(qn) as n approaches infinity

and qn approaches q ∈ L.

Definition 2.5. [3] A function that is both lower semi-continuous and upper

semi-continuous is said to be a continuous function.

The following results represent some properties of semi-continuous functions in

an Lp-space.

Proposition 2.2. Let ϑ be a function from a normed space Q to the extended

line R. If the function ϑ is convex then the following are equivalent:

(i). ϑ is weakly-lsc.

(ii). ϑ is weakly sequentially-lsc.

(iii). ϑ is sequentially-lsc.

(iv). ϑ is lsc.

Theorem 2.3. Let {ϑj}nj=1 be a sequence of continuous functions from an Lp-

space to the extended real line R such that ϑ1q ≤ ϑ2q... ≤ ϑnq ≤ ... ∀q ∈ L. Then

{ϑj}nj=1 converges uniformly to a function ϑ ∈ L.

Proposition 2.4. For a function ϑ : L → R the following statements are equiv-

alent:

(i). ϑ is lower semi-continuous.

(ii). epi(ϑ) ∈ L;

3. Main Results

Now we give the main results of this study. We begin with the following propo-

sition in which lower semi-continuity is characterized using convex conjugates and

bi-conjugates. We show that if a conjugate is convex then it is weak∗-lower semi-

continuous (w∗ − lsc) and a convex bi-conjugate is weak lower semi-continuous.

Proposition 3.1. Suppose ϑ is any function in an Lp-space L. Then ϑ∗, ϑ∗∗ are

convex functions, and

(i). ϑ∗ is w∗ − lsc.

(ii). ϑ∗∗ is w − lsc.

(iii). ϑ∗∗ ≤ ϑ

Furthermore, if ϑ1, ϑ2 are convex functions satisfying ϑ1 ≤ ϑ2, then ϑ∗
1 ≥ ϑ∗

2.
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Proof. Let the convex function ϱ ∈ L∗ : ϱ → ⟨q, ϱ⟩,∀q ∈ dom(ϑ) be weak∗

continuous function. Then, ϱ → ⟨q, ϱ⟩ is w∗ − lsc for all finite or infinite function

ϑ(q). Define ϑ∗ as ϑ∗ = sup{q : q ∈ lsc(L)}. Since the supremum of any collection

of lsc(L) is a lsc function, then ϑ∗ supremum is a convex and weak∗ − lsc function.

Now, the function q 7→ ⟨q, ϱ⟩ is convex and weakly lsc. Define ϑ∗∗ as ϑ∗∗ = sup{q :

q 7→ ⟨q, ϱ⟩}∀ϱ ∈ L∗. Then ϑ∗∗ is convex and weakly lsc. For each q ∈ dom(ϑ), ⟨q, ϱ⟩−
ϑ∗(ϱ) ≤ ϑ(q). Hence ∀q ∈ dom(ϑ), ϑ∗∗(q) = sup{(⟨q, ϱ⟩−ϑ∗(ϱ))} ≤ ϑ(q) this implies

that ϑ∗∗ ≤ ϑ. Let ϑ1 ≤ ϑ2, then, ϑ
∗
2(ϱ) = sup{(⟨q, ϱ⟩ − ϑ2(q))} ≤ sup{(⟨q, ϱ⟩ −

ϑ1(q))} = ϑ∗
1(ϱ) and this clearly shows that ϑ∗

1 ≥ ϑ∗
2. □

The next result presents a characterization of lower semi-continuous functions in

terms of Moore-Smith sequences.

Lemma 3.2. Let L be an Lp-space and lsc(L) denote a collection of all lsc

functions. Let ϑ be a measurable function and {(qj)}j∈N ∈ dom(ϑ) be a Moore-Smith

sequence. Then ϑ ∈ lsc(L), if and only if,
∫
L ϑ(q) ≤ lim inf

∫
L ϑ(qj),∀q ∈ dom(ϑ)

whenever qj → q.

Proof. Let ϑ ∈ lsc(L). Assume {(qj)j∈N} is a Moore-Smith sequence converg-

ing to q ∈ dom(ϑ). If r < ϑ(q), ∀r ∈ R, then ϑ−1(r,∞) is open since ϑ ∈ lsc(L).
Now, ∀q ∈ ϑ−1(r,∞) and qj → q, ∃jr ≤ j satisfying qj ∈ ϑ−1(r,∞). So given

j ≥ jr we have ϑ(qj) > r implying that lim inf ϑ(qj) ≥ r. Now ∀r < ϑ(q) we

obtain lim inf ϑ(qj) ≥ ϑ(q) (by Banach-Steinhaus Theorem). Hence, equivalently

ϑ(q) ≤ lim inf ϑ(qj). Given that ϑ is measurable over L and qj → q, then by Fatou’s

Lemma we have
∫
L ϑ(q) ≤ lim inf

∫
L ϑ(qj).

Conversely, for each Moore-Smith sequence qj → q let
∫
L ϑ(q) ≤ lim inf

∫
L ϑ(qj).

Then ϑ(q) ≤ lim inf ϑ(qj). Let Ω = ϑ−1(−∞, r],∀r ∈ R. If q ∈ Ω and given qj → q,

then {qj} ∈ Ω. Since Ω = ϑ−1(−∞, r], we deduce that ϑ(qj) ≤ r for each j and

so ϑ(q) ≤ r. Hence q ∈ Ω, implying that Ω is closed and so the complement of Ω

(Ωc = ϑ−1(r,∞)) is open, showing that ϑ is lower semi-continuous. □

The following result considers proper functions that are bounded below. It af-

firms that the sum of any two lower semi-continuous functions whose values do not

take to −∞ is lower semi-continuous and so is the product of these functions with

a positive scalar.

Theorem 3.3. Let L be an Lp space. Suppose two functions ϑ and ϱ are lower

semi-continuous in L such that ϑ > −∞, ϱ > −∞, then their sum ϑ + ϱ is lower

semi-continuous in L and furthermore ∀λ > 0, λϑ is lower semi-continuous in L).
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Proof. Let {(qj)j∈N} ∈ Q be a Moore-Smith sequence converging to q ∈ Q,

then by Lemma 3.2 we have,∫
L
(ϱ+ ϑ)(q) ≤ lim inf

∫
L
ϱ(qj) + lim inf

∫
L
ϑ(qj)

≤ lim inf

∫
L
(ϱ(qj) + ϑ(qj))

= lim inf

∫
L
(ϱ+ ϑ)(qj)

Thus
∫
L(ϱ+ϑ)(q) ≤ lim inf

∫
L(ϱ+ϑ)(qj) showing that ϱ+ϑ is lower semi-continuous.

It also follows that, ∫
L
(λϑ)(q) =

∫
L
λϑ(q)

≤ λ lim inf

∫
L
ϑ(qj)

= lim inf λ

∫
L
ϑ(qj)

= lim inf

∫
L
(λϑ)(qj)

Hence, λϑ is lower semi-continuous. □

Theorem 3.4. For an Lp space L, if the sequence of lsc ϑn is finite ∀θ : L → R,
and if θn converges uniformly in L to ϑ, then ϑ is lower semi-continuous.

Proof. Given ξ > 0, an integer N ≤ n exists such that |ϑn(q) − ϑ(q)| < ξ,

∀q ∈ L. Define η by η = sup |ϑn(q)− ϑ(q)| : q ∈ L. Now, ∀ξ > 0, η ≤ ξ whenever

n ≥ N . If N ≤ n and given a Moore-Smith sequence ϑ(qj)j∈N converging in L, then

ϑ(q) ≤ ϑn(q)

= η + lim inf ϑn(qj)

= 2η + lim inf ϑ(qj)

= 2ξ + lim inf ϑ(qj)

This holds for all ξ > 0. Thus, we get ϑ(q) ≤ lim inf θ(qj). It therefore follows

that ϑ is lower semi-continuous.

□

Corollary 3.5. Let L be Lp-space. Denote a collection of continuous functions

taking L → [0, 1] by C(ϑ). If a function ϑ is lower semi-continuous, then each

ϑ > 0, is given by ϑ = sup{φ : φis continuous,∀φ ≤ ϑ}
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Proof. Suppose φ ∈ C(ϑ) : φ ≤ ϑ. Since C(ϑ) is nonempty let β = ϑ−1(−∞, ϑ(q)−
ξ],∀q ∈ L, ξ > 0. Now, L\β = βc = ϑ−1(ϑ(q)−ξ,∞) is open, so β is closed. There-

fore, q /∈ β. Hence, ∃ρ : L → [0, 1] a continuous function satisfying ρ(L) = 0 and

ρ(q) = 1. Assuming ϑ(q) − ξ ≤ 0 then, given ρ ≥ 0 and ϑ ≥ 0, (ϑ(q) − ξ)φ ≤ φ.

If we let ϑ(q) − ξ > 0 and w ∈ β, then (ϑ(q) − ξ)φ(w) ≤ φ(w) when w /∈ β and

(ϑ(q) − ξ)φ(w) = 0 when w ∈ β. Thus (ϑ(q) − ξ)φ ≤ ϑ and since (ϑ(q) − φ)φ is

continuous, then (ϑ(q)− φ)φ ∈ C(ϑ). Thus, we obtain

M(C(ϑ))(q)) ≥ (ϑ(q)−ξ)φ(q) = ϑ(q)−ξwhereM(C(ϑ) = sup{φ : φis continuous,∀φ ≤ ϑ}.

Since ϑ was arbitrary we therefore have M(C(ϑ))(q) ≥ ϑ(q) and since q was also

arbitrary we have M(C(ϑ)) ≤ ϑ. Therefore we have ϑ = M(C(ϑ)) showing that

ϑ = sup{φ : φis continuous,∀φ ≤ ϑ}
□

Proposition 3.6. Let ϑ be a function from an Lp-space L to the extended real

line R. Let B be a compact subset of R. If ϑ is a lower semi-continuous function,

then ϑ(q) ≥ ϑ(q̄) for all q ∈ B.

Proof. By way of contradiction, suppose that ϑ has no lower bound. Then,

∃qr ∈ B, ∀r ∈ N satisfying ϑ(qr) < −r. Compactness of B implies that a subse-

quence qrk of qr exists which converges to q0 ∈ B. Lower semi-continuity of ϑ means

that ϑ is lower semi-continuous at every point q0 ∈ B in the convergent sequence

qr tending to q. Thus, by Lemma 3.2, lim infk→∞ ϑ(qrk) ≥ ϑ(qr). This shows a

contradiction since lim infk→∞ ϑ(qrk) = −∞. Hence, ϑ is bounded below.

Suppose F = inf ϑ(q) : q ∈ B. Then, F ∈ R because ϑ(q) is not empty and is

bounded below.

Let the sequence br ∈ B be such that ϑ(br) converges to F . Then, since B is com-

pact, there is brk a subsequence of br with limit q̄ ∈ B. Now, F = limk→∞ ϑ(brk) =

lim infk→∞ ϑ(brk) ≥ ϑ(q̄) ≥ F . This shows that F = ϑ(q̄). Therefore, ϑ(q) ≥ ϑ(q̄),

∀q ∈ B. □

In the next theorem we have characterized a lsc function in terms of its epigraph.

Theorem 3.7. For an Lp-space L, epi(ϑ) ⊆ L× R is closed if and only if ϑ is

lower semi-continuous.

Proof. Let ϑ be lower semi-continuous and ∀q ∈ L, ∀k ∈ R assume (qi, ki) ∈
epi(ϑ) converges to (q, k) ∈ L × R. Then qi → q and ki → k. By Proposition 2.1,

we have ϑ(q) ≤ lim inf ϑ(qi) ≤ lim inf ki ≤ lim ki = k. Thus, ϑ(q) ≤ k implies that

(q, k) ∈ epi(ϑ). Then, the set (L× k)∩ epi(ϑ) = (q, k) : k ≥ ϑ(q) ⊆ L×R is closed.

This implies that ϑ−1(−∞, k) as a subset of L is closed, but ϑ−1(k,∞),∀q ∈ L, is

open. Since this holds true for each k ∈ R, thus ϑ is lower semi-continuous. □

The next result shows that weakly lower semi-continuity implies lower semi-continuity.
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Corollary 3.8. Suppose ϑ : L → R is a convex function in an Lp-space L.

Then, ϑ is lower semi-continuous if ϑ is weakly lower semi-continuous.

Proof. It is a fact that R is locally convex, so the product L×R is also locally

convex. Therefore, Lϑ × R forms a weak topology in L. Hence, weak closure in

L × R implies closure in Lϑ × R. A convex subset of L × R is always closed in

Lϑ ×R as well as the whole domain of L×R. Thus, epi(ϑ) is closed, implying that

ϑ ⊆ Lϑ × R is weakly semi-continuous. Since epi(ϑ) ⊆ L × R is closed, then ϑ is

lower semi-continuous. □

The next theorem proves that if a function of a measurable function ϑ is equal to

the Lebesgue integral of φ with respect to the Borel measure µ, then the function

is upper semi-continuous.

Theorem 3.9. Let L be an Lp-space. Let ϑ ∈ L be a function, and suppose

the function φ is Lebesgue integrable over L with respect to the Borel measure µ.

If ϑ(φ) =
∫
L
φ, dµ such that φ is measurable, then ϑ is an upper semi-continuous

function.

Proof. Assume φ belongs to a set of continuous upper semi-continuous func-

tions, and the upper semi-continuous sequence φn converges to φ. Suppose the up-

per semi-continuous sequence gj decreases to gj = φ+
1/j. Then limj→∞ ϑ(gj) = ϑ(φ).

Since φ is bounded above and µ(L) < ∞, then ϑ(φ) is finite. Now, for each ξ > 0,

suppose j satisfies ϑ(gj) < ϑ(φ) + ξ. Then |φn −φ| ≤ 1/j since φn → φ. Therefore,

φn ≤ gj, implying that ϑ(φn) ≤ ϑ(gj) ≤ ϑ(φ) + ξ. □

The corollaries below follow from Theorem 3.9. We show that upper semi-

continuous property of functions is preserved under uniform continuity of any se-

quence of upper semi-continuous functions.

Corollary 3.10. Let ϑ ∈ L be an integral induced by a Borel measure µ. Suppose

φn ∈ usc(L) converges to a measurable function φ ∈ usc(L). Define ϑr(φn) =

ϑ[(φn)1/r
+] such that ϑr : φn : n ∈ Z+ → R, ∀r ∈ Z+. Then, limn → ∞ϑ(φn) =

ϑ(φ) if and only if φr converges uniformly to ϑ on φn.

Proof. Let F = φ ∪ φn. Since limn→∞ ϑ(φn) = ϑ(φ), ϑ is continuous on F

and φ is its unique limit point. Suppose ϑr(φ) = ϑ[(φ)1/r+]. Then, ϑ is upper

semi-continuous and forms a decreasing sequence. Therefore, for all a ∈ F , ϑ1(a) ≥
ϑ2(a) ≥ · · · ≥ ϑ(a), hence lim r → ∞ϑr(a) = ϑ(a). So, by Dini’s theorem, it follows

that ϑr is uniformly convergent on φn.

On the converse, let limr→∞ ϑr(a) ̸= ϑ(a). Since ϑ is upper semi-continuous at

φ, we know that |φn−φ| ≤ 1/n and ϑ(φn) < ϑ(φ)− ξ, ∀ξ > 0. Now, (φn)1/n
+ > φ

implies that ϑn(φn) ≥ ϑ(φ) > ϑ(φn) + ξ. Thus, ϑr cannot converge uniformly to ϑ

on φn. Hence, lim r → ∞ϑr(a) = ϑ(a). □
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Corollary 3.11. Let ϑ be an upper semi-continuous function. Then, for any

positive integer δ, the function ϑ+
δ is upper semi-continuous and bounded in an Lp-

space L.

Proof. To show that ϑ+
δ is bounded below, assume ϑ+

δ is not bounded below.

Then, there exists (qn, hn) ∈ hypo(ϑ+
δ )

c such that hn < −n for all n. The distance

between (qn, hn) and each point of hypo(ϑ) ≥ δ. We assume that qn → q. Thus,

(qn, ϑn) is arbitrarily close to the half line (q, ϑ): ϑ(q) ≥ q, as n → ∞. Hence,

(q, ϑ) : q ∈ ϑ(q) is a subset of the hypo graph of ϑ, which is a contradiction to our

assumption. Therefore, ϑ+
δ is bounded below.

To show that ϑ+
δ is upper semi-continuous, we apply Theorem 2.7. Since ϑ+

δ is

closed and bounded, we have βδ · hypo(ϑ) = hypo(ϑ+
δ ) because parallel bodies of

closed sets are closed. Therefore, for every δ > 0, ϑ+
δ is upper semi-continuous. □

4. Conclusion

We have characterized lower semi-continuity in Lp-spaces using Moore-Smith

sequences and shown that a function ϑ : L → R is lower semi-continuous if, for

any Moore-Smith sequence qjj∈N in the domain of ϑ that converges to an Lp-space

function ϑ, implies that if q ∈ dom(ϑ), then ϑ(q) is less than or equal to the limit

inferior of ϑ(qj). We have further proved that ϑ, defined as ϑ(φ) =
∫
L
φ, dµ for a

continuous function φ, is an upper semi-continuous function.
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