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Almost convex-valued perturbation to second

order sweeping process

Doria Affane and Mustapha Fateh Yarou∗

Abstract. This paper deals with nonconvex set-valued perturbation to second

order nonlinear evolution system governed by the so-called nonconvex sweeping

process for a class of subsmooth moving sets depending on state and velocity.

Making use of our recent paper obtained for a convex valued perturbation, we

prove a new existence result when the perturbations are almost convex . Further-

more, we apply our result in the study of an optimal control problem known as a

minimum time problem.

1. Introduction

The second order perturbed sweeping process has been widely studied lately. It

consists of a differential inclusion, governed by a normal cone subject to external

forces called perturbations. This type of problem finds its applications in nonsmooth

mechanics, quasistatics, planning procedures in mathematical economy, game the-

ory, crowd motion among others. The first results were obtained for convex sets,

then generalized to the non-convex case for uniformly prox-regular sets and then for

subsmooth sets , see e.g. [7, 8, 9, 12, 14, 15, 24] and the references therein. In

these works, the perturbation was convex valued. In [16], the authors introduced

the notion of almost convex sets which generalizes the convex sets and for which,

they obtained an existence result when the right hand side of the differential inclu-

sion is upper semicontinuous. By applying such almost convex perturbations to the

sweeping process, a number of results have been obtained, see [1, 2, 3, 4, 5, 6].
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The second order perturbed nonconvex sweeping process takes the following

general form:

(SP)

{
−ÿ(t) ∈ ND(t,y(t),ẏ(t))(ẏ(t)) +H(t, y(t), ẏ(t)) a.e. t ∈ [0, T ]

y(0) = u0; ẏ(0) = v0 ∈ D(0, u0, v0),

ND(t,y(t),ẏ(t))(ẏ(t)) denotes the normal cone at ẏ(t) to the moving set D(t, y(t), ẏ(t))

and H : [0, T ]×Rd×Rd ⇁ Rd plays the role of a perturbation to the problem and is

upper semicontinuous with closed convex values unnecessarily bounded and without

any compactness assumption. (SP) was solved first for convex compact sets D(y(t))

and F ≡ 0 by [13], then for time and state-dependent nonconvex sets D(t, y(t)), see

for instance [15] and the references therein; where the authors proved the existence

of solution to (SP) for nonconvex uniformly prox-regular sets D(t, y(t))). For other

approaches, we refer to [20, 22, 23].

In the present paper, using our recent result for the perturbed second order

sweeping process (SP), we give a new result for the following ”autonomous problem”

(ASP)

{
−ÿ(t) ∈ ND(y(t),ẏ(t))(ẏ(t)) +H(y(t), ẏ(t)) a.e t ∈ [0, T ];

y(0) = u0; ẏ(0) = v0 ∈ D(u0, v0),

with an almost convex perturbation. We study topological properties of the trajec-

tories set and we establish the existence of a minimum time control problem.

The rest paper is organized as follows. After some preliminaries and notation,

in Section 3, we study topological properties of the solution set and the admissible

set of (SP), when the perturbation is upper semicontinuous with nonempty closed

convex values unnecessarily bounded and the sets D depends jointly on time, state

and velocity. The existence of solution of (ASP) under weaker hypotheses on the

perturbation is considered in section 4. In the last section we study a time optimal

problem.

2. Notation and preliminaries

Let Rd be the d-dimensional Euclidean space, B the unit closed ball of Rd, B(a, r)

(resp. B(a, r)) the open (resp. closed) ball of center a ∈ Rd and radius r > 0,

and L1
Rd([0, T ]) the space of all Lebesgue integrable Rd-valued mappings defined

on [0, T ]. We denote by CRd([0, T ]) the Banach space of all continuous mappings

u : [0, T ] → Rd endowed with the norm of uniform convergence ∥ · ∥C, C1
Rd([0, T ])

the Banach space of all mappings u ∈ CRd([0, T ]) having an absolutely continuous

derivatives, equipped with the norm ∥u∥C1 = max{∥u∥C, ∥u̇∥C} and W 2,1
Rd ([0, T ]), the

space of all continuous mappings in CRd([0, T ]) such that their first derivatives are

absolutely continuous and their second weak derivatives belong to L1
Rd([0, T ]). Let

t ∈ [0, T ], we denote by

St(u0, v0) = {y ∈ W 2,1
Rd ([0, t]) : y is solution of (SP)}
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the trajectories set of the differential inclusion (SP) on the interval [0, t] and

A(u0,v0)(t) = {y(t) : y ∈ St(u0, v0)}

the attainable set of (SP) at the time t.

For a nonempty closed subset A of Rd, we denote by ProjA(u) the projection of

u onto A defined by

ProjA(u) =
{
y ∈ A : d(u,A) = ∥u− y∥

}
.

We denote by co(A) the convex hull of A and co(A) the closed convex hull,

characterized by

co(A) = {x ∈ Rd : ∀x′ ∈ Rd, ⟨x′, x⟩ ≤ δ∗(x′, A)},

where δ∗(x′, A) = sup
y∈A

〈
x′, y

〉
stands for the support function of A at x′ ∈ Rd. Recall

that for a closed convex subset A, we have

d(x,A) = sup
x′∈B

(〈
x′, x

〉
− δ∗(x′, A)

)
.

If g is a real-valued locally-Lipschitz function defined on Rd, the Clarke sub-

differential ∂g(x) of g at x is the nonempty convex compact subset of Rd, given

by

∂g(x) = {ξ ∈ Rd : g◦(x; v) ≥
〈
ξ, v

〉
,∀v ∈ Rd},

where

g◦(x; v) = lim
z→x,

sup
h↓0

g(z + hv)− g(z)

h

is the generalized directional derivative of g at x in the direction v (see [17]). Let S

be a nonempty closed subset of Rd, the Clarke normal cone to S at x is defined by

NS(x) = ∂ΨS(x) ([17]), where ΨS denotes the indicator function of S, i.e. ΨS(x) = 0

if x ∈ S and +∞ otherwise. An important concept of Fréchet subdifferential will

be also needed. A vector u ∈ Rd is in the Fréchet subdifferential ∂Fg(x) of g at x

([19]) provided that for every ε > 0 there exists δ > 0 such that for all y ∈ B(x, δ)

we have 〈
u, y − x

〉
≤ g(y)− g(x) + ε∥y − x∥.

The Fréchet normal cone NF
S (x) of S at x ∈ S is defined by NF

S (x) = ∂FΨS(x). It

is known that for all x ∈ S we have the following inclusions: ∂Fg(x) ⊂ ∂g(x); NF
S (x) ⊂

NS(x) and

∂Fd(x, S) = NF
S (x) ∩B. (1)

One has also,

when y ∈ ProjS(x) then x− y ∈ NF
S (y). (2)
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Now, let recall the definition of equi-uniform subsmoothness for a family of sets,

it is an extension of convexity and prox-regularity of a set. In this way, the result

concerning existence of solution of the second-order differential inclusion is more

general. We begin with some basic definitions from subsmoothness while referring

the reader to [11].

Let S be a closed subset of Rd, we say that S is subsmooth at x ∈ S, if for every

ε > 0 there exists δ > 0 such that〈
ξ1 − ξ2, x1 − x2

〉
≥ −ε∥x1 − x2∥ (3)

whenever xi ∈ B(x, δ) ∩ S and ξi ∈ NS(xi) ∩B, i = 1, 2. The set S is subsmooth if

it is subsmooth at each point of S. We say further that S is uniformly subsmooth,

if for every ε > 0 there exists δ > 0 such that (3) holds for all xi ∈ S, satisfying

∥x1 − x2∥ < δ and all ξi ∈ NS(xi) ∩B.

The following subdifferential regularity of the distance function also holds true for

subsmooth sets:

Proposition 2.1. [21] Let S be a closed set of a Hilbert space. If S is subsmooth

at x ∈ S, then NS(x) = NF
S (x) and ∂d(x, S) = ∂Fd(x, S).

Definition 2.1. Let
(
S(q)

)
q∈I be a set of closed sets of Rd with parameter q ∈ I.

It is called equi-uniformly subsmooth, if, for every ε > 0, there exists δ > 0 such

that, for each q ∈ I, the inequality (3) holds, for all xi ∈ S(q) satisfying ∥x1−x2∥ < δ

and for all ξi ∈ NS(q)(xi)
⋂

B, i = 1, 2.

Proposition 2.2. [18] Let
{
S(t, v) : (t, v) ∈ [0, T ] × Rd

}
be a family of

nonempty closed sets of Rd which is equi-uniformly subsmooth and let a real number

η > 0. Assume that there exist real constants L1 > 0 and L2 > 0 such that, for any

x, y, u, v ∈ R and s, t ∈ [0, T ]

|d
(
x, S(t, u)

)
− d

(
y, S(s, v)

)
| ≤ ∥x− y∥+ L1|t− s|+ L2∥u− v∥.

Then the following assertions hold:

(a) for all (s, v, y) ∈ Gph(S), η∂d
(
y, S(s, v)

)
⊂ ηB;

(b) ∂d
(
·, S(·, ·)

)
is an upper semicontinuity set-valued mapping, that is, for any

sequences (sn, vn)n ⊂ [0, T ] × R converging to (s, v), (yn)n converging to

y ∈ S(s, v) with yn ∈ S(sn, vn) and for all ξ ∈ R, we have

lim sup
n→∞

σ

(
ξ, η∂d

(
yn, S(sn, vn)

))
≤ σ

(
ξ, η∂d

(
y, S(s, v)

))
.

In the next, we give the definition of the almost convex sets.

Definition 2.2. [16] For a vector space X, a set Q ⊂ X is called almost convex

if for every ξ ∈ co(Q) there exist λ1 and λ2, 0 ≤ λ1 ≤ 1 ≤ λ2, such that λ1ξ ∈ Q

and λ2ξ ∈ Q.
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Trivially, any convex set is almost convex since Q = co(K). If K is a convex

set not containing the origin, Q = ∂K is almost convex, and if the convex set K

contains the origin, one take Q = {0} ∪ ∂K.

3. Main results

3.1. Sweeping process with convex perturbation. In this section we study

topological properties of the set of trajectories and the admissible set of the problem

(SP).

Theorem 3.1. Let D : [0, T ] × Rd × Rd ⇁ Rd be a set-valued mapping with

nonempty closed values satisfying:

(D1)
{
D(t, x, x′) : (t, x, x′) ∈ [0, T ]× R× Rd

}
is equi-uniformly subsmooth;

(D2) there are three constants Λ1 ∈]0, 1[, Λ2 > 0 and L > 0 such that, for all

ti, xi, x
′
i, z ∈ Rd(i = 1, 2)

|d(z,D(t1, x1, x
′
1))− d(z,D(t2, x2, x

′
2))| ≤ L|t1 − t2|+ Λ1∥x1 − x2∥+ Λ2∥x′

1 − x′
2∥.

And let H : [0, T ]×Rd×Rd ⇁ Rd be a set-valued mapping with nonempty closed

convex values, upper semicontinuous on [0, T ]× Rd × Rd such that

(H) for some real κ > 0

d
(
0, H(t, x, x′)

)
≤ κ

(
1 + ∥x∥+ ∥x′∥

)
, for all (t, x, x′) ∈ [0, T ]× Rd × Rd.

Then, for every (u0, v0) ∈ Rd × Rd with v0 ∈ D(0, u0, v0), the set of trajectories

St(u0, v0) is nonempty and compact in W 2,1
Rd ([0, t]).

Proof. 1) A simple adjustment of Theorem 3.1 in [9] gives the existence of

solution of (SP), with

∥ẏ(t)∥ ≤ ∆ and ∥ÿ(t)∥ ≤ Θ, a.e. t ∈ [0, T ],

where

∆ =
(
∥u0∥+ T

(2κ(2 + 2∥v0∥+ ∥u0∥) + 2L

1− Λ1

))
exp

(
T
(Λ2 + 2κ(1 + T )

1− Λ1

))
,

Θ =
L+ Λ2∆+ 2κ(1 + ∆ +Υ)

1− Λ1

+ L+ 2κ(1 + ∥u0∥+ ∥v0∥).

2) Compactness of St(u0, v0). Let (yn)n ⊂ St(u0, v0) be a sequence of trajecto-

ries, so, for t̃ ∈ [0, t] and n ∈ N,

||yn(t̃)|| ≤ Υ, ||ẏn(t̃)|| ≤ ∆ and ||ÿn(t̃)|| ≤ Θ.

Then the sequences (yn(t̃))n and (ẏn(t̃))n are relatively compact and equi-continuous,

(yn) is relatively compact in (C1
Rd([0, t]), ∥.∥C1). By extracting a subsequence, (yn)

converges to some mapping y ∈ (C1
Rd([0, t]), ∥.∥C1) and (ÿn) converges weakly to ÿ

with ||ÿ(t̃)|| ≤ Θ a.e. t̃ ∈ [0, t].
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For each n ∈ N, let hn(t) ∈ H
(
t, yn(t), ẏn(t)

)
be the element of minimal norm

which is a measurable selection, by the hypothesis (H), we get

∥hn(t̃)∥ ≤ κ(1 + ∆ +Υ), ∀t̃ ∈ [0, t],

so we can extract from the sequence (hn)n a subsequence which converge in

σ(L∞
Rd([0, t]), L

1
Rd([0, t])) to some mapping h ∈ L1

Rd([0, t]). Let us prove now that y is

solution of the problem (SP). We have

d
(
ẏn(t), D(t, y(t), ẏ(t))

)
≤ d

(
ẏn(t), D(t, y(t), ẏ(t))

)
− d

(
ẏn(t), D(t, yn(t), ẏn(t))

)
≤ Λ1||yn(t)− y(t)||+ Λ2||ẏn(t)− ẏ(t)||.

As D
(
t, y(t), ẏ(t)

)
is closed, by passing to the limit in the preceding inequality,

we get y(t) ∈ D
(
t, y(t), ẏ(t)

)
.

Now, we have

∥ÿn(t) + hn(t)∥ ≤ ∥ÿn(t)∥+ ∥hn(t)∥ ≤ Θ+ κ
(
1 + ∆ +Υ

)
= l,

that is,

ÿn(t) + hn(t) ∈ lB, for all n ∈ N.

Since

ÿn(t) + hn(t) ∈ −N
D
(
t,yn(t),ẏn(t)

)(ẏn(t)), for all n ∈ N

we get by (1)

ÿn(t) + hn(t) ∈ −l∂d

(
ẏn(t), D

(
t, yn(t), ẏn(t)

))
.

Note that (ÿn + hn, hn)n weakly converges in L1
Rd×Rd

(
[0, t]

)
to (ÿ + h, h). An ap-

plication of the Mazur’s Theorem to (ẏn + hn, hn)n and we follow the same demon-

stration as that of part 1) we get

ÿ(t) + h(t) ∈ −l∂d
(
ẏ(t), D

(
t, y(t), ẏ(t)

))
⊂ −N

D
(
t,y(t),ẏ(t)

)(ẏ(t)), a.e t̃ ∈ [0, t]

and

h(t) ∈ H
(
t, y(t), ẏ(t)

)
for all t̃ ∈ [0, t].

This completes the proof of the Theorem. □

The following is a direct consequence of Theorem 3.1

Corollary 3.2. Under the hypotheses of Theorem 3.1. For all t ∈ [0, T ], the

attainable set A(u0,v0)(t) at t for (SP) is compact.
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3.2. Sweeping process with almost convex perturbation. Now we are

going to announce an existence result for (ASP) when the perturbation H takes

almost convex values and with a weaker assumption on the upper semicontinuity.

Theorem 3.3. Let D : Rd×Rd ⇁ Rd be with nonempty closed values satisfying:

(D′
1) {D(x, y) : (x, y) ∈ Rd × Rd} is equi-uniformly subsmooth;

(D′
2) there exist Λ1 ∈]0, 1[ and Λ2 > 0 s.t. for all z, xi, yi ∈ Rd(i = 1, 2)

|d(z,D(x1, y1))− d(z,D(x2, y2))| ≤ Λ1∥x1 − x2∥+ Λ2∥y1 − y2∥;

(D′
3) for all (x, y) ∈ Rd × Rd and every α > 0, αD(x, y) ⊆ D(x, αy).

And let H : Rd × Rd ⇁ Rd be with almost convex compact values satisfying

(H1) co
(
H(·, ·)

)
is upper semicontinuous on Rd × Rd;

(H2) for some κ > 0

d
(
0, co(H(x, y)

)
≤ κ

(
1 + ∥x∥+ ∥y∥

)
, ∀(x, y, α) ∈ Rd × Rd;

(H3) for all (x, y) ∈ Rd × Rd, and every β > 0, H(x, βy) ⊆ βH(x, y).

Then, for every (u0, v0) ∈ Rd × Rd with v0 ∈ D(u0, v0), there exists at least one

solution u of (ASP).

Proof. 1) Thanks to Theorem 3.1, there is at least one solution x : [0, T ] → Rd,

of the convexified problem

(ASPco)

{
−ÿ(t) ∈ N

D
(
y(t),ẏ(t)

)(ẏ(t)) + co
(
H(y(t), ẏ(t))

)
a.e t ∈ [0, T ];

y(0) = u0; ẏ(0) = v0 ∈ D(u0, v0).

2) By the almost convexity of the set H(x(t), ẋ(t)), for any t ∈ [0, T ], there exist

two sets

Γ1(t) = {θ1 ∈ [0, 1] : θ1 Proco(H(x(t),ẋ(t))(0) ∈ H
(
x(t), ẋ(t)

)
}

and

Γ2(t) = {θ2 ∈ [1,+∞[: θ2 Proco(H(x(t),ẋ(t))(0) ∈ H(x(t), ẋ(t))}.
Let [a, b] ⊂ [0, T ] and assume that λ1 ∈ Γ1(t) \ {0} and λ2 ∈ Γ2(t). Using

Theorem 2 in [5], we conclude that there are two measurable subsets of [a, b] having

characteristic functions χ1 and χ2 such that χ1 + χ1 = χ[a,b] and an absolutely

continuous function s : [a, b] → [a, b] such that

ṡ(τ) =
1

λ1

χ1(τ) +
1

λ2

χ2(τ)

and s(b)− s(a) = b− a.

3) Considering the closed set

C = {τ ∈ [0, T ] : 0 ∈ co
(
H(x(t), ẋ(t))

)
},
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if C is empty, then λ1 ̸= 0, so, we can apply part 2) on [0, T ]. Putting s(τ) =∫ τ

0

ṡ(ω)dω, s is increasing and
(
s(0), s(T )

)
= (0, T ), so, s maps [0, T ] onto itself.

Let t : [0, T ] → [0, T ] be its inverse, then
(
t(0), t(T )

)
= (0, T ) and

d

dτ
s(t(τ)) =

ṡ(t(τ))ṫ(τ) = 1, then,

ṫ(τ) = λ1X1(t(τ)) + λ2X2(t(τ)),

and ẗ(τ) = 0. Now, considering the mapping x̃(τ) = x(t(τ)), we have
d

dτ
x̃(τ) =

ṫ(τ)ẋ(t(τ)), then

d2

dτ 2
x̃(τ) = (ṫ(τ))2ẍ(t(τ)) + ẗ(τ)ẋ(t(τ)) = ẍ(t(τ))(ṫ(τ))2,

and we have

− 1

ṫ(τ)

d2

dτ 2
x̃(τ) = −ẍ(t(τ))(ṫ(τ)) = −ẍ(t(τ))

(
λ1X1(t(τ)) + λ2X2(t(τ))

)
∈
(
ND(x(t(τ)),ẋ(t(τ)))(ẋ(t(τ))) + Proco(H(x(t),ẋ(t))(0)

)(
λ1X1(t(τ)) + λ2X2(t(τ))

)
,

using normal cone properties, the fact that λ1 ∈ Γ1(t) \ {0} and λ2 ∈ Γ2(t), we

obtain

− 1

ṫ(τ)

d2

dτ 2
x̃(τ) ∈ N

D
(
x̃(τ), 1

ṫ(τ)
˙̃x(τ)

)( 1

ṫ(τ)
˙̃x(τ)

)
+H

(
x̃(τ),

1

ṫ(τ)
˙̃x(τ)

)
,

by (D′
3), (H2) and the properties of the normal cone we can write

− 1

ṫ(τ)

d2

dτ 2
x̃(τ) ∈ N 1

ṫ(τ)
D
(
x̃(τ), ˙̃x(τ)

)( 1

ṫ(τ)
˙̃x(τ)

)
+

1

ṫ(τ)
H
(
x̃(τ), ˙̃x(τ)

)
∈ N

D
(
x̃(τ), ˙̃x(τ)

)( ˙̃x(τ))+ 1

ṫ(τ)
H
(
x̃(τ), ˙̃x(τ)

)
then

− d2

dτ 2
x̃(τ) ∈ N

D
(
x̃(τ), ˙̃x(τ)

)( ˙̃x(τ))+H
(
x̃(τ), ˙̃x(τ)

)
.

If C is nonempty, let c = sup{τ ; τ ∈ C} ∈ C, since C is closed. The complement

of C is open relative to [0, T ], it consists of at most countably many nonoverlapping

open intervals (ai, bi), with the possible exception of one of the form [aii , bii) with

aii = 0 and one (aif , bif ] with aif = c. For each i apply the part 2) to the interval

(ai, bi) to infer the existence of Ki
1 and Ki

2, two subsets of (ai, bi) with characteristic

functions X i
1(.), X i

2(.) such that X i
1 + X i

2 = X[ai,bi], setting

ṡ(τ) = X i
1(τ)

1

λ1

+ X i
2(τ)

1

λ2

we obtain ∫ bi

ai

ṡ(ω)dω = bi − ai.
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a) On [0, c], set

ṡ(τ) =
1

λ2

XC(τ) +
∑(

X i
1(τ)

1

λ1

+ X i
2(τ)

1

λ2

)
,

where the sum is over all intervals contained in [0, c], i.e., with the exception of

]c, T ], we obtain ∫ c

0

ṡ(ω)dω = κ ≤ c;

bercause λ2 ≥ 1 and

∫ bi

ai

ṡ(ω)dω = bi − ai. Set s(τ) =

∫ τ

0

ṡ(ω)dω, s is an invertible

mapping from [0, c] to [0, κ]. Define t : [0, κ] → [0, c] the inverse of s(·) and extend

t(·) to [0, c] as an absolutely continuous mapping t̃(·) with ˙̃t(s) = 0 for s ∈]κ, c]. Let
prove that x̃(τ) = x(t̃(τ)) is a solution of (ASP) on the interval [0, c] and satisfies

x̃(c) = x(c). Indeed, we have that for τ ∈ [0, κ], t̃(τ) = t(τ) is invertible, such that

ṫ(τ) = λ2XC(τ) +
∑(

X i
1(τ)λ1 + X i

2(τ)λ2

)
,

since
d2

dτ 2
x̃(τ) = (ṫ(τ))2ẍ(t(τ)) + ẗ(τ)ẋ(t(τ)) = ẍ(t(τ))(ṫ(τ))2,

we get

1

ṫ(τ)

d2x̃(τ)

dτ 2
= ẍ(t(τ))(ṫ(τ))

=

(
λ2XC(t(τ)) +

∑
(X i

1(t(τ))λ1 + X i
2(t(τ))λ2)

)
ẍ(t(τ))

∈ ND(x̃(τ), 1
ṫ(τ)

˙̃x(τ))(
1

ṫ(τ)
˙̃x(τ)) +H(x̃(τ),

1

ṫ(τ)
˙̃x(τ))

consequently

d2

dτ 2
x̃(τ) ∈ ND(x̃(τ), ˙̃x(τ))( ˙̃x(τ)) +H(x̃(τ), ˙̃x(τ)).

In particular, since t(k) = c and ṫ(τ) = 0, for all τ ∈]k, c], one has

t̃(τ) = t̃(k) = t(k), ∀τ ∈]k, c]

then

x̃(k) = x(t̃(k)) = x(t̃(τ)) = x̃(τ), ∀τ ∈]k, c]

then, x̃ is constant on ]κ, c], we cdeduce that ˙̃x(τ) = ẋ(τ) is solution of (ASP).

b) On [c, T ], λ1 > 0, by (a), the construction of the part 2 can be repeated to

find a solution to problem (ASP). □
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3.3. Time optimal problem. In this section we investigate the existence of

solution to the following minimum time problem for the differential inclusion

(ASPh)


ÿ(t) ∈ −N

D
(
y(t),ẏ(t)

)(y(t)) + g
(
y(t), ẏ(t), ν(t)

)
a.e. t ∈ [0, T ],

ν(t) ∈ Z
(
y(t), ẏ(t)

)
, ∀t ∈ [0, T ],

y(t) ∈ D
(
y(t), ẏ(t)

)
, ∀t ∈ [0, T ],

y(0) = u0, ẏ(0) = v0

Corollary 3.4. Let D : Rd×Rd ⇁ Rd be with nonempty closed values satisfying

(D′
1), (D′

2) and (D′
3), Z : Rd×Rd ⇁ Rd an upper semicontinuous set-valued mapping

with nonempty compact values and g : Gph(Z) → Rn a continuous single-valued

mapping satisfying:

(G1) there is a nonnegative constant κ such that

∥g(x, x′, z)∥ ≤ κ
(
1 + ∥x∥+ ∥x′∥

)
, ∀(x, x′, z) ∈ Gph(Z);

(G2) for all (x, x′, z) ∈ Gph(Z) and every β > 0, g(x, βx′, z) = βg(x, x′, z).

Consider the set-valued mapping H : Rd × Rd ⇁ Rd defined by

H(x, x′) = {g(x, x′, z)}z∈Z(x,x′) for all (x, x′) ∈ Rd × Rd.

Assume that H(·, ·) is almost convex and compact valued for every (x, x′) ∈
Rd × Rd and assume that for given u0, v0, u1 in Rd, and for some 0 ≤ t ≤ T, u1 ∈
A(u0,v0)(t). Then, the problem of reaching u1 from u0 in a minimum time admits a

solution.

Proof. First we must show that for all t ∈ [0, T ] the attainable set at t,A(u0,v0(t)

coincides with Aco
(u0,v0)

(t), the attainable set at t of the convexified problem. Indeed,

For every t ∈ [0, T ], A(u0,v0)(t) ⊂ Aco
(u0,v0)

(t), it is enough to show that Aco
(u0,v0)

(t) ⊂
A(u0,v0)(t). Let y(t) ∈ A(u0, v0)

co(t), so y(·) is solution of (ASPco). Applying Theo-

rem 3.3 on [0, t], we find a solution ũ(·) to (ASP) such that y(t) = ỹ(t) ∈ A(u0,v0)(t).

Then, Aco
(u0,v0)

(t) ⊂ A(u0,v0)(t).

Under the hypotheses on g and Z, co(H) is upper semicontinuous,

d
(
0, co

(
H(x, x′)

))
≤ d

(
0, H(x, x′)

)
≤ κ

(
1 + ∥x∥+ ∥x′∥

)
, ∀(x, x′) ∈ Rd × Rd,

and for all x, x′ and every β > 0, H(x, βx′) = βH(x, x′). Let t1 = inf{τ ∈ [0, t] :

u1 ∈ A(u0,v0)(τ)}, (tn) a sequence decreasing to t1 and for each n, let un(·) be a

solution of the problem
ÿ(t) ∈ −N

D
(
y(t),ẏ(t)

)(ẏ(t)) +H
(
y(t), ẏ(t)

)
, a.e. in [0, tn],

ẏ(t) ∈ D
(
y(t), ẏ(t)

)
, ∀t ∈ [0, tn],

y(0) = u0, ẏ(0) = v0,
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such that un(tn) = u1. We define the sequence (ūn(·)) by ūn(τ) = un(τ), for all

τ ∈ [0, t1]. Then

(ūn(τ)) ⊂ A(u0,v0)(τ) = Aco
(u0,v0)

(τ).

Since Aco
(u0,v0)

(τ) is compact, by extracting a subsequence, we may conclude that

(ūn(τ)) converges to ū(τ) ∈ Aco
(u0,v0)

(τ), as ū(t1) = u1 ∈ Aco
(u0,v0)

(t1) = A(u0,v0)(t1). So

that, ū is the solution of (ASPh) that reaches u1 in the minimum time and t1 is the

value of the minimum time. This completes the proof. □

4. Conclusion

In this paper, we extend our previous existence result obtained in [10] for the

nonconvex perturbed second-order state-dependent sweeping process in two direc-

tions: we consider a general class of equi-uniformly subsmooth sets that contains

convex sets and uniformly prox-regular sets, these sets depends jointly on time,

state and velocity. The compactness of the attainable set is stated. Furthermore,

for the autonomous problem, we provide a new existence result by taking a pertur-

bation with almost convex values instead to be convex. Finally, as an application,

the obtained results are used to prove the existence of solution to a minimum time

problem.
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