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Parameterised eight order iterative structures

requiring no function derivative for solving

nonlinear equation

Oghovese Ogbereyivwe∗ and Salisu Shehu Umar

Abstract. In this work, the function derivatives in the double Newton iterative

structure were annihilated by the use of function estimation with polynomial in-

terpolation and divided difference operator. This resulted in the development of

a modified double Newton iterative structure that requires no function derivative.

To enhance the modified double Newton iterative structure, it was composed with

an iterative structure that involves weight functions and requires an additional

function evaluation to produce two parameterized families of iterative structures

with convergence order eight. The conditions for convergence of the developed

iterative structures were established via the Taylor series approach. The applica-

bility of the developed iterative structures was tested on some nonlinear equations

and from the obtained computational results, they are highly competitive when

compared with some good existing iterative structures of the same order of con-

vergence.

1. Introduction

There are plethora of Iterative Structures (IS) for determining the simple solution

σ of nonlinear (NL) equation w(s) = 0, that require functions derivatives evaluation

in their structures. Some standard examples of this kind of IS can be found in the

literature [1, 2, 3, 4, 5, 6, 7] and reference there in. The most famous of them all,

is the Newton IS (NIS) put forward in [7]. The NIS require the evaluation of one
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function and its derivative in an iteration cycle. It is expressed as

sk+1 = sk −
w(sk)

w′(sk)
, k = 0, 1, 2, · · · . (1)

In fact, most existing IS for obtaining the zero of NL equations are variants of the

NIS and are either two-point or multipoint in structure. The presence of evaluation

of functions derivatives in an IS, will incur more computation cost. Furthermore,

in some cases, obtaining derivatives of functions can be daunting. To circumvent

this setback, the functions derivatives that appear in an IS are usually annihilated

by means of estimation. Several successful attempts have been made by researchers

to convert some of the existing IS that require functions derivative to IS that are

derivative free. One earliest and famous of these attempts is the one due to Steffensen

presented in [8]. It is a modification of the IS in (1) and put forward as:

sk+1 = sk −
w(sk)

w [sk, βk]
, k = 0, 1, 2, · · · , (2)

where w [·, ·] is a divided difference operator. In the IS (1), the derivative w′(sk) was

estimated by a divided difference w [sk, βk], where βk = sk + w(sk). It is important

to note that the IS (2) preserved the convergence order (CO) property of (1) and

so, the IS in (2) is regarded as a tough competitor to the NIS in (1).

Since the advent of the concept used in (2), many authors have employed it

together with weight function technique to further improve the IS (1). These im-

provements were usually put forward as two-point or multipoint IS utilizing (2) or

its variants as the predictor iterative function, see [9, 10, 11, 12, 13, 14] and some

references in them.

The fundamental goal of this work is to put forward an efficient families of

IS that is designed via the estimation of function derivative in the double NIS

with polynomial and the use of weight functions. Consequently, two parameterized

families of derivative free IS for determining the solution of NL equation is developed.

The manuscript structure has Section 2 dedicated to the IS development, while

Section 3 contains the convergence analysis of the developed IS. The numerical

implementation of the IS is provided in Section 4. The concluding remarks were

given in Section 5.

2. Development of the IS

We begin by acknowledging the double Newton IS given as:

yk = sk −
w (sk)

w′ (sk)
,

sk+1 = yk −
w (yk)

w′ (yk)
.

(3)
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The IS in (3) require the evaluation of two functions w(·) and two functions

derivatives w′(·). To enhance the IS (3), a strategy is employed targeted at annihi-

lating the functions derivatives w′(·) in the first and second step. To this end, an

estimation of the functions derivatives w′(·) in the IS is made by considering the

interpolation polynomial as following:

I (x) =
2∑

i=0

ai (x− sk)
i,

I ′ (x) = a1 + 2a2 (x− sk) .

(4)

For some known values substituted in (4), such as

I (yk) = w(yk) =
2∑

i=0

ai (yk − sk)
i,

I ′ (yk) = w′ (yk) = a1 + 2a2 (yk − sk)

(5)

where w (sk) = a0, w
′ (sk) = a1, and w′′(sk) = a2, the equations in (5) can be solved

to obtain

w′ (yk) ≈ 2

[
w(yk)− w(sk)

yk − sk

]
− w′(sk). (6)

By the estimation of the derivative w′(sk), (6) can be rewritten as:

w′ (yk) ≈ 2w [sk, yk]− w [sk, ηk] , (7)

where ηk = sk + α (w(sk))
m, m ≥ 2, α ∈ ℜ − {0}, and w [·, ·] is a divided difference

operator. Motivated by (7), a modified double Newton iterative structure (MDNIS)

which is a derivative free version of (3) is obtained and put forward as:

yk = sk −
w (sk)

w [sk, ηk]
;

sk+1 = yk −
w (yk)

2w [sk, yk]− w [sk, ηk]
.

(8)

Observe that, the MDNIS will require the evaluation of three distinct functions

in one complete iteration cycle and is derivative free. It was proven in Yasmin et

al., [13] that for m = 2, the IS in (8) is of CO four. Consequently, it is optimal as

conjectured by Kung and Traub [15] and possesses better efficiency than the NIS

and double Newton IS presented in (1) and (3) respectively.

In order to improve the CO and efficiency of the IS (8), we compound it with an

iterative step that involves three real-valued weight functions (RVWF) M(v) , P (t)
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and G(s) as following:

yk = sk −
w (sk)

w [sk, ηk]
;

zk = yk −
w (yk)

2w [sk, yk]− w [sk, ηk]

sk+1 = zk −
w (zk)

2w [sk, yk]− w [sk, ηk]
[M(v)× P (t)×G(u)]

(9)

where v = w(yk)
w(sk)

, t = w(zk)
w(ηk)

, u = w(zk)
w(yk)

and the RVWF with their corresponding Taylor

series expression about 0 as

M(v) = M(0) +
8∑

i=1

1

i!
M (i)(0)(v)i, (10)

P (t) = P (0) +
8∑

i=1

1

i!
P (i)(0)(t)i, (11)

G(u) = G(0) +
8∑

i=1

1

i!
G(i)(0)(u)i, (12)

with M (i)(0), P (i)(0) and G(i)(0) to implies, the ith derivative of the functions M , P

and G and evaluated at 0. Our claim in this case, the IS (8) is of CO eight for some

conditions placed on the parameters M (i)(0), P (i)(0) and G(i)(0), for 1 ≤ i ≤ 4. The

proof of this claim is established in the proof of Theorem 3.1.

To reduce the number of weight functions used in the IS (9), the third step of

the IS is replaced with a new iterative function given as

sk+1 = zk −
w(zk)

w [yk, zk]
[M(v)× P (t)] (13)

In this case, our claim is that the IS (13) is of CO eight for some suitable

conditions placed on M (i)(0) and P (i)(0), for 1 ≤ i ≤ 4. This will be established in

the proof of Theorem 3.2.

3. Convergence Analysis of the IS

The convergence of sequence of approximations of the solution of NL equation,

produced by the IS (9) and (13) are established in this section. In establishing the

convergence, it is important to note that if ek = sk−σ is an IS error at kth iteration

and that equation of the form ek+1 = Ωeνk + O(eν+1
k ) can be derived from the IS

via the method of Taylor series expansions of the functions w(·) and w′(·), then
ek+1 is referred to as error equation, Ω is the error constant and ν is CO of the IS.

Furthermore, suppose the error equation holds for an IS as described above, then

the IS Efficiency index (Eeff ) is measured as Eeff = ν
1
T , T is number of all distinct

functions w(·) in the IS cycle.
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The convergence of the IS (9) and (13) is considered in the proof of Theorem 3.1

and Theorem 3.2.

Theorem 3.1. Consider the scalar function w : D ⊂ ℜ → ℜ that is differen-

tiable in D and has a simple solution σ ∈ D. If s0 is close to σ, then the sequence

{sk}k≥0 , (sk ∈ D) of approximations generated by the IS in (9) will converge to σ

with CO eight when M(v) , P (t)and G(u) are jointly subjected to the conditions

M(0) = P (0) = G(0) = 1,M ′(0) = 0,M ′′(0) = 2 , M ′′′(0) = 12, M (iv)(0) < ∞,

P ′(0) = 2, P ′′(0) = 2, G′(0) = 1 and G′′(0) < ∞ .

Proof. Let ck = w(i)(σ)
i!w′(σ)

, i ≥ 2 and set s=sk in the Taylor’s series expansion of

w (s) and w′ (s), then the expansion for w (sk) and w (ηk) can be obtained as

w (sk) = w′ (σ)

[
ek +

9∑
n=2

cne
n
k +O

(
e10k
)]

, k=0, 1, 2, · · · (14)

and

w (ηk) = w′ (σ)
[
ek + c2e

2
k + (c3 + α)e3k + (c4 + 5αc2)c

4
k

+ (c5 + 6αc3 + 9αc22)e
5
k + (c6 + 7α(3c2c3 + c32) + α2c2)e

6
k + · · ·

+(3α2(5c32 + 8c2c3 + 2c4) + 9α(c32c3 + · · ·+ 3c2(c
3
2 + c5) + c6) + c8)e

8
k +O(e8k)

]
(15)

respectively. By using (14) and (15), we get

w [sk, ηk] =
w(ηk)− w(sk)

ηk − sk
= 1 + 2c2ek + 3c3e

2
k + (ac2 + 4c4)e

3
k

+ (3α(c22 + c3) + 5c5)e
4
k + 3(α(c32 + 4c2c3 + 2c4) + 2c6)e

5
k

+ (α2c3 + α(c42 + 15c22 + 9c23 + 21c2c4 + 10c5) + 7c7)e
6
k +O(e6k).

(16)

The expressions in (14) and (16), can be used to get

yk =sk −
w(sk)

w[sk, ηk]
= α + c2e

2
k + (2c3 − 2c22)e

3
k + (3c4 − 7c2c3 + 4c32 + αc2)e

4
k

+ (4c5 − 10c2c4 − 6c23 + 20c22c3 + 3αc3 − 8c43)e
5
k

+ (5c6 − 13c2c5 + 2α(3c4 − c2c3 + c32) + 16c52 − · · ·+ 28c22c4 − 17c3c4)e
6
k +O(e7k).

(17)

Equation (17) is then used to get the Taylor’s expansion of w(yk) as

w(yk) =w′(σ)[c2e
2
k + (2c3 − 2c22)e

3
k + (3c4 − 7c2c3 + 5c32 + αc2)e

4
k

+ (4c5 − 10c2c4 + (2c22(2c3 − 2c22)− 6c23 + 20c22 + 3αc3 − 8c42))e
5
k

+ (16c25 − 51c32c3 + 33c2c
2
3 + 28c22c4 − 17c3c4 + 2α(c32 − c2c3 + 3c4)

+ c2((−2c22 + 2c3)
2 + 2c2(αc2 + 14c23 − 7c2c3 + 3c4)))e

6
k +O(e7k)].

(18)
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Using (14) and (18), we have

w [sk, yk] =
w(yk)− w(sk)

yk − sk
= 1 + c2ek +

(
c22 − c3

)
e2k + (c4 − 2c32 + 3c2c3)e

3
2

+ (c5 + 4c42 − 8c22c3 + 2c23 + 4c2c4 + αc22)e
4
k

+ (−8c22 + 4αc2c3 + 20c32c3 + · · ·+ 5c2c5)e
5
k +O(e6k).

(19)

By the application of the expressions in (16)-(19), the following expansion for zk
in (9) is obtained as:

zk = σ + (c32 − c2c3)e
4
k − (αc22 + 2(c2c4 + c23 − 4c22c3 + 2c42))e

5
k

+ (10c52 − 30c32c3 + 18c2c
2
3 + α(c32 − 6c2c3)− 3c2c5 − 7c3c4 + 12c22c4)e

6
k +O(e7k).

(20)

Now;

w(zk) =w′ (σ) [(c32 − c2c3)e
4
k − ((c2c4 + c32 − 4c22 + 2c42) + αc22)e

5
k

+ (10c52 − 30c32c3 + 18c2c
2
3 + 12c22c4 − 7c3c4 − 3c2c5 + α(c32 − 6c2c3))e

6
k

+O(e7k)],

(21)

v =
w(yk)

w(sk)
= c2ek + (−3c22 + 2c3)e

2
k + (αc2 + 8c32 − 10c2c3 + 3c4)e

3
k

+ (−αc22 − 20c42 + 3αc3 + 37c22c3 − 8c23 − 14c2c4 + 4c5)e
4
k

+ (48c52 − 118c32c3 + 55c2c
2
3 + · · ·+ α(5c32 − 6c2c3 + 6c4)− 18c2c5 + 5c6)e

5
k

+ (−112c62 + 344c42c3 + 26c33 + α2(c3 − c22) + · · ·+ 2c2(75c3c4 − 11c6) + 6c7)e
6
k

+ (256c72 − 944c52c3 + · · ·+ c22(−693c3c4 + 79c6 + · · ·+ · · · 7c8))e7k +O(e8k),

(22)

t =
w(zk)

w(ηk)
= (c32 − c2c3)e

3
k + (αc2 − 5c42 + 9c3c

2
2 − 2c32 − 2c2c4)e

4
k

+ (15c52 − 40c32c3 + 21c2c
2
3 + α(c32 − 5c2c3) + 14c22c4 − 7c3c4 − 3c2c5)e

5
k

+ (−35c62 + 125c42c3 − 110c22c
2
3 + · · ·+ α(3c42 − 9c22c3 + 7c23 · · · − 4c2c6))e

6
k

+ (72c72 − 320c52c3 + α(c32 − 2c2c3) + 161c42c4 + · · ·+ c2(−126c33 + · · · − 5c7))e
7
k

+O(e6k),

(23)
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and

u =
w(zk)

w(yk)
= (c22 − c3)e

2
k − (2(c32 − 2c2c3 + c4) + αc2)e

3
k

+ (−2αc22 + c42 − 3αc3 − 6c22c3 + c22 + 5c2c4 − 3c3)e
4
k

+ (4c52 − 4c32c3 − 4c2c
2
3 + α(c32 − 9c2c3 − 6c4)− 4c22 + · · ·+ 4c6)e

5
k

+ (−12c62 + 38c42c3 − c33 − α(c22 + c3)− 13c32c4 + · · ·+ c2(3c3c4 + 7c6 − 5c7))e
6
k

+O(e7k).

(24)

By the substitution of the expansions of v, t and u in (22)-(24) into the RVWF

in (10)-(12) respectively, the following results were obtained.

M(v) = M(0) + c2M
′(0)ek +

(
2c3M

′(0) +
1

2
c22 (M

′′(0)− 6M ′(0))

)
e2k

+

(
M ′(0)(αc2 + 3c4) + 2c2c3 (M

′′(0)− 5M ′(0)) + c32

(
8M ′(0)− 3M ′′(0) +

M ′′′(0)

6

))
e3k

+

(
M ′(0)(4c5 − 8c23) + · · ·+ c42

(
25

2
M ′′(0)− 3

2
M ′′′(0) +M (iv)(0)− 20M ′(0)

))
e4k

+
(
M ′(0)(5c6 − 22c3c4) + · · ·+ c32c3

(
83M (iv)(0)′(0)− 118M ′(0)− 11M ′′′(0) + 8

))
e5k

+O(e6k),

(25)

P (t) = P (0) +
(
c32 − c2c3

)
P ′(0)e3k −

(
5c52 − αc22 − 9c22c3 + 2c23 + 2c2c4

)
P ′(0)e4k

+
(
15c52 − 40c32c3 + 21c2c

2
3 + α

(
c32 − 5c2c3

)
+ 14c22c4 − 7c3c4 − 7c3c4 − 3c2c5

)
P ′(0)e5k

+O(e6k),

(26)

and

G(u) = G(0) +
(
c22 − c3

)
G′(0)e2k −

(
−αc2 + 2

(
c32 − 2c2c3 + c4

))
G′(0)e3k

+

((
−2αc22 + c42 − 3αc3 − 6c22c3 + 3c23 + 5c2c4 − 3c5

)
G′(0) +

1

2

(
c22 − c3

)
G′′(0)

)
e4k

+
((
4c52 − 4c32c3 − 4c2c

2
3 + · · · −

(
c22 − c3

) (
αc2 + 2

(
c32 − 2c2c3 + c4

)))
G′′(0)

)
e5k

+O(e6k).

(27)
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The substitution of (16),(19), (20), (21) and (25)-(27) into the third step of (9)

produces the following equations:

sk+1 = zk −
w (zk)

2w [sk, yk]− w [sk, ηk]
[M(v)× P (t)×G(u)] = σ − (c32 − c2c3)ζe

4
k

+ (αc22ζ + 2c22ζ + 2c2c4ζ + c42((4M(0)−M ′(0))G(0)P (0)− 4)

+ c22c3(8 +G(0)(M ′(0)− 8M(0)))P (0))e5k

+ (7c3c4ζ + 2c32c4(6 +G(0)(M ′(0)− 6M(0))P (0)) + · · ·+ c32(M
′(0)−M(0))P (0))e6k

+ ((α2c32ζ + c32c4(4G
′(0)M(0)P (0) +G(0)(34M(0)− 21M ′(0) +M ′′(0))P (0))− 40)

− · · ·+ c23(−80 + 14G′(0)M(0)P (0)−G′(0)M ′(0)P (0)

+G(0)(62M(0)P (0)− 49M ′(0)P (0) + 3M ′(0)P (0)−M(0)P ′(0))))e7k

+ (−6(−17c4c5ζ − 13c3c6ζ + · · ·
+G(0)((90M ′(0)− 27M ′′(0) +M ′′′(0))P (0) + 6M(0)(5P (0) + 2P ′(0)))))e8k

+O(e9k).

(28)

where ζ = G(0)M(0)P (0) − 1. For the IS (9) to converge with CO eight, the

coefficients of ejk, (4 ≤ j ≤ 7) in (28) must vanish. To achieve this, we need to

solve for the solution of the set of equations below.

ζ = 0, M ′(0) = 0, (G′(0)−G(0))M(0) = 0,

4G(0)M(0)− 2G′(0)M(0)−G(0)M ′′(0) = 0, 2M(0)−M ′′(0) = 0,

G(0)M(0)P ′(0)− 2 = 0, (M(0))2 − 1 = 0,

M ′′′(0) + 12(M(0))3 − 24M(0) = 0.

(29)

The solutions that satisfy the set of equations in (29) are

M(0) = P (0) = G(0) = 1, M ′(0) = 0, M ′′(0) = 2, M ′′′(0) = 12,

M (iv)(0) < ∞, P ′(0) = 2, P ′′(0) = 2, G′(0) = 1, G′′(0) < ∞.
(30)

Substituting the solutions in (30) into (28), we then have

sk+1 =σ +
1

2
(c32
(
2ac22 + 2c2c4 + 2c22c3 (G

′′(0)− 6)− c23 (G
′′(0)− 2)

−c42
(
2M iv(0) +G′′(0)− 16

))
e8k +O

(
e9k
)
+O

(
e9k
)
.

(31)

From (31), the error equation of the IS (9) is obtained as

ek+1 =
1

2
(c32
(
2ac22 + 2c2c4 + 2c22c3 (G

′′(0)− 6)− c23 (G
′′(0)− 2)

−c42
(
2M iv(0) +G′′(0)− 16

))
e8k +O

(
e9k
) (32)

Consequently, the equation in (32) implies that, IS (9) is of CO eight. This ends

the proof. □
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Remark 3.1. For any three functions M(v), P (t) and G(u) satisfying the con-

ditions in Theorem 3.1, a CO eight can be obtained. Consider M(v) = 1 + v2 +

2v3 + φv4, P (t) = 1 + 2t + ϕt2 and G(u) = 1 + u + τu2, where φ, ϕ, τ ∈ ℜ, will
produce a parameterized family of an IS as:

yk = sk −
w (sk)

w [sk, ηk]
;

zk = yk −
w (yk)

2w [sk, yk]− w [sk, ηk]
;

sk+1 = zk −
w(zk)

2w [sk, yk]− w [sk, ηk]
×

(
1 +

(
w(yk)

w(sk)

)2

+ 2

(
w(yk)

w(sk)

)3

+ φ

(
w(yk)

w(sk)

)4
)

×

(
1 + 2

(
w(zk)

w(ηk)

)
+ ϕ

(
w(zk)

w(ηk)

)2
)(

1 +

(
w(zk)

w(yk)

)
+ τ

(
w(zk)

w(yk)

)2
)
.

(33)

We present below some concrete members of IS (33) denoted as OU8a and OU8b

with their respective error equations:

OS8a : φ = ϕ = τ = 0

ek+1 =
(
c42 − c22c3

) (
ac22 − 8c2c

3
2 − 6c22c3 + c23 + c2c4

)
e8k +O

(
e9k
)

OS8b : φ =
1

25
, ϕ = 0, τ =

1

30

ek+1 =
(c42 − c22c3) (300ac

2
2 + 2383c42 − 1790c22c3 + 295c23 + 300c2c4) e

8
k

300
+O

(
e9k
)

The applicability of OS8a and OS8b are presented in Section 3.

Theorem 3.2. Consider the scalar function w : D ⊂ ℜ → ℜ that is differ-

entiable in D and has a simple solution σ ∈ D. If s0 is close to σ, then the

sequence {sk}k≥0 , (sk ∈ D) of approximations generated by the IS in (13) will con-

verge to σ with CO eight when M(v) and P (t) are jointly subjected to the conditions

M(0) = P (0) = 1,M ′(0) = 0,M ′′(0) = 2 , M ′′′(0) = 12, M (iv)(0) < ∞, and

P ′(0) = 2 ..

Proof. From (17), (18), (20) and (21), we have

w [yk, zk] =
w(zk)− w(yk)

zk − yk
= 1 + c22e

2
k + (2c2c3 − 2c32)e

3
k

+ c2(αc2 + c2c3 − c2 − c2c3 + 3c4)e
4
k

− c2(α(c
2
2 − 3c3) + 4(3c42 − 6c22c3 + c23 + 3c2c4 − c5))e

5
k

+ (26c62 − 69c42c3 + · · ·+ 4c22(7c
2
3 − 4c5) + c2(5c6 − 18c3c4))e

6
k +O(e7k).

(34)
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The substitution of the expansions in (21), (25), (27) and (34) into (13) yields

sk+1 = σ − c2(c
2
2 − c3)ϑe

4
k

+ (αϑc22 + 2ϑc23 + 2ϑc2c4 + c42(4M(0)P (0)−M ′(0)P (0)− 4)

+ c22c3(8− 8M(0)P (0) +M ′(0)P (0)))e5k

+ (7ϑc3c4 + · · ·+ c2(3ϑc5 + c23(18− 18M(0)P (0) + 4M ′(0))))e6k

+ (α2ϑc22 + c32c4(M
′′(0)P (0)− 21M ′(0)P (0) + 38M(0)P (0)− 40)

· · ·+ · · ·+ c23 (76M(0)P (0)− 50M ′(0)P (0) + 3M ′′(0)P (0)−M(0)P ′(0)− 80))e7k

+
1

6
(50c23c4 − 17c4c5 + · · ·+ 2c23(624M(0)P (0)− · · ·+ · · ·+ 3M ′(0)P ′(0)− 756))e8k

+O(e9k),

(35)

where ϑ = M(0)P (0)− 1. For the terms involving ejk, j = 4, 5, 6, 7 in (35) to vanish,

the solution of the following set of equations must hold.

M(0)P (0) = 1, M(0) ̸= 0, M(0)P (0)− 1 = 0 M ′(0) = 0

2M(0)−M ′′(0), M(0)P ′(0)− 2 = 0, 12M(0)−M ′′′(0) = 0.
(36)

The set of equations in (36) is satisfied when

M(0) = P (0) = 1, M ′(0) = 0, M ′′(0) = 2,

M ′′′(0) = 12, M (iv)(0) < ∞, P ′(0) = 2.
(37)

When the solution in (37) is substituted in (35), we have

sk+1 = σ +
(
c42 − c22c3

) (
αc2 − 4c2c3 + c4 − c32

(
M (iv)(0)− 7

))
e8k +O

(
e9k
)
. (38)

From (38), the error equation of the IS (13) becomes

ek+1 =
(
c42 − c22c3

) (
αc2 − 4c2c3 + c4 − c32

(
M (iv)(0)− 7

))
e8k +O

(
e9k
)
. (39)

Thus, from (39), the CO of IS presented in (13) is eight. This concludes the

proof. □

Remark 3.2. For any two functions M(v) and P (t) satisfying the conditions in

Theorem 3.2, a CO eight will be obtained. Consider M(v) = 1+ v2+2v3+φv4 and
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P (t) = 1 + 2t+ ϕt2, will produce another type of parameterised family of an IS as:

yk = sk −
w (sk)

w [sk, ηk]
;

zk = yk −
w (yk)

2w [sk, yk]− w [sk, ηk]
;

sk+1 = zk −
w(zk)

w [zk, yk]

(
1 +

(
w(yk)

w(xk)

)2

+ 2

(
w(yk)

w(xk)

)3

+ φ

(
w(yk)

w(xxk
)

)4
)

×

(
1 + 2

(
w(zk)

w(ηk)

)
+ ϕ

(
w(zk)

w(ηk)

)2
)

(40)

Two concrete members of IS (40) which are denoted as OU8c, and OU8d with

their respective error equations are:
OS8c : φ = ϕ = 0,

ek+1 =
(
c42 − c22c3

) (
ac2 + 7c2c

3
2 − 4c2c3 + c4

)
e8k +O

(
e9k
)

OS8d : φ = 7, ϕ = 0

ek+1 =
(
c42 − c22c3

)
(ac2 − 4c2c3 + c4) e

8
k +O

(
e9k
)

4. The IS implementation

This section provides the implementation and applicability of the developed IS (

OS8a, OS8b, OS8c and OS8d) with α = 0.001. Some NL equations recently used

in testing developed IS in the literature [3, 4, 5] were also used to carry out the

implementation of the developed IS. THe computational performance of the de-

veloped IS were compared with that of some good existing IS of same CO. Three

measures used for comparison includes: Number of iteration required by an IS to

attain convergence (IT), absolute value of function of k iteration point (|w(sk)|) and
computational CO (νcoc) put forward by Jay [16] given as

νcoc ≈
ln |w(sk+1)/w(sk)|
ln |w(sk)/w(sk−1)|

. (41)

The IS used for comparison includes the one in Soleymani [10] (SL8) CO eight

IS:

yk = sk −
w(sk)

w [sk,∆]
, ∆ = sn + w(sk),

zn = yk −
w(yk)

w [sk,∆]

[
1 +

2 + w [sk,∆]

1 + w [sk,∆]

w(yk)

w(sk)

]
,

sk+1 = zn −
w(zk)

w [sk, zk]

[
1 +

1

1 + w [sk,∆]

(
w(yk)

w(sk)

)]
,

(42)
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Yasmin et al, [13] (YZS8) (Eq. 2.12) CO eight IS:

yk = sk −
w(sk)

w [ηk, sk]
,

zk = yk −
w(yk)

2f [yk, sk]− w [ηk, sk]
,

sk+1 = zk −
w(zk)

Λk

,

(43)

where

Λk = w [zk, sk]
(
2 + zk−sk

zk−yk

)
− (zk−sk)

2

(yk−sk)(zk−yk)
w [yk, sk] + f [ηk, sk]

(
zk−yk
yk−sk

)
,

and Soleymani and Shateyi (SS8) [11] (Eq. 2.8) CO eight IS:

yk = sk −
w(sk)

w [Ψk, sk]
, Ψk = sk + αw(sk),

zk = yk −
w(yk)w(Ψ)

(w(Ψk)− w(yk))w [Ψk, sk]
,

sk+1 = zk −
w(zk)w((Ψk)

(w(Ψk)− w(yk))w [Ψk, sk]
Θk,

(44)

where

Θk =
{(

1 + w(zk)
w(yk)

)(
1 + w(zk)

w(Ψk)

)(
1 + w(zk)

w(sk)

)
Λ
}
, Λ =

(
1 + (1 + αw [sk,Ψk])

(
w(yk)
w(Ψk)

)2)
.

In order to obtain better approximation of NL equation solution and to reduce

loss of significant figures (s.f), 2000 s.f was used in the execution of developed pro-

gram code in Maple 2017 software environment, where |w(sk)| < 10−1000 was used

as stopping criterion.

The NL equations utilized for the IS implementation includes:

Example 4.1. w1(s) = −2 + (s− 1)3 = 0, σ = 2.2599 · · · , see [4].

Example 4.2. w2(s) = 1− s2 + sin2(s) = 0, σ = 1.4044 · · · , see [4].

Example 4.3. w3(s) = 1− 2s− ln(s)− 7 = 0, σ = 4.2199 · · · , see [5].

Example 4.4. w4(s) = −.75e−0.05s + 1 = 0, σ = −5.753 · · · , see [5].

Example 4.5. w5(s) = 5− 5e−s − s = 0, σ = 4.9651 · · · , see [3].

The computation results obtained when the IS were used to solve Example 4.1-

4.5 are presented in Table 1-4. Observe that all the developed IS solved the NL

equations in Example 4.1-4.5 just as the compared IS. Furthermore,the calculated

CO obtained using (41) on the computation results for the developed IS (see the

last column of Table 1-4) agrees with the theoretical order of convergence obtained

in Section 3.



PARAMETERISED EIGHT ORDER ITERATIVE STRUCTURES ... 13

Table 1. Comparison of IS results for Examples 4.1-4.4

IS s0 |w(s1)| |w(s2)| |w(s3)| |w(s4)| |w(s5)| νcoc
SL8 9.4e− 1 6.1e− 03 1.2e− 016 1.8e− 0112 2.2e− 783 8.0

YZS8 1.0e− 2 2.9e− 22 9.6e− 179 1.4e− 1430 - 8.0

SS8 1.8e− 2 3.0e− 19 1.7e− 153 2.0e− 1227 - 8.0

OS8a 3.0 7.5e− 3 1.6e− 22 5.7e− 180 1.6e− 1439 - 8.0

OS8b 7.5e− 3 1.5e− 22 4.5e− 180 2.4e− 1440 - 8.0

OS8c 7.4e− 3 1.3e− 22 1.3e− 180 1.4e− 1444 - 8.0

OS8d 1.0e− 3 3.1e− 21 2.9e− 169 1.7e− 1353 - 8.0

SL8 5.6e− 2 3.2e− 12 7.3e− 084 2.3e− 0585 - 8.0

YZS8 1.8e− 4 1.6e− 34 7.4e− 275 - - 8.0

SS8 2.2e− 3 1.5e− 24 1.0e− 193 3.3e− 1547 - 8.0

OS8a 2.0 1.4e− 3 2.4e− 26 2.3e− 208 1.5e− 1664 - 8.0

OS8b 1.4e− 3 2.3e− 26 1.2e− 208 7.7e− 1667 - 8.0

OS8c 1.0e− 3 1.7e− 27 1.4e− 217 2.8e− 1738 - 8.0

OS8d 1.2e− 3 1.9e− 26 4.9e− 209 1.1e− 1669 - 8.0

SL8 2.1e− 11 1.6e− 083 1.8e− 0588 - - 8.0

YZS8 5.5e− 15 6.4e− 126 2.1e− 1013 - - 8.0

SS8 1.3e− 14 1.1e− 122 4.3e− 987 - - 8.0

OS8a 4.0 1.1e− 14 5.1e− 123 7.7e− 990 - - 8.0

OS8b 1.1e− 14 4.5e− 123 2.8e− 990 - - 8.0

OS8c 6.9e− 15 4.9e− 175 3.3e− 1006 - - 8.0

OS8d 7.2e− 15 9.3e− 125 8.2e− 1005 - - 8.0

SL8 3.3e− 4 10.0e− 26 2.1e− 176 3.5e− 1231 - 8.0

YZS8 3.5e− 7 3.5e− 55 4.1e− 439 - - 8.0

SS8 5.8e− 6 3.4e− 44 4.5e− 350 - - 8.0

OS8a 1.0 5.0e− 6 4.6e− 45 2.4e− 357 - - 8.0

OS8b 4.9e− 6 4.1e− 45 9.2e− 358 - - 8.0

OS8c 4.9e− 6 4.1e− 45 1.0e− 357 - - 8.0

OS8d 1.6e− 5 1.7e− 40 1.1e− 320 - - 8.0

4.1. Real life problems applications. Application 1: (Chemical equilibrium

[17]) Consider the equation of obtaining the fraction ( fractional conversion) of the

nitrogen-hydrogen feed that gets converted to ammonia presented in [17]. Suppose

we have the pressure of 250 atm and temperature of 5000C, then the problem involves

obtaining the solution of the equation

w(s) =
8s2(4− s)2

(2− s)(6− 3s)2
− 0.186 = 0. (45)
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Table 2. Comparison of IS results for Examples 4.5

IS s0 |w(s1)| |w(s2)| |w(s3)| |w(s4)| νcoc
SL8 1.1e− 1 3.8e− 11 2.2e− 077 5.3e− 541 8.0

YZS8 9.4e− 5 5.2e− 42 5.0e− 340 - 8.0

SS8 8.2e− 5 3.2e− 41 1.8e− 332 - 8.0

OS8a 0.5 2.2e− 6 2.5e− 54 7.5e− 438 - 8.0

OS8b 3.3e− 6 7.4e− 53 4.3e− 426 - 8.0

OS8c 2.0e− 5 2.1e− 45 1.9e− 366 - 8.0

OS8d 2.6e− 5 2.9e− 45 8.5e− 365 - 8.0

The above equation can be reduced to a polynomial equation as:

w(s) = s4 − 7.79075s3 + 14.744s2 + 2.511s− 1.674 = 0. (46)

The equation in (46) has four solutions. These are : s1 = 0.27776 . . .; s2 =

−0.384094 . . .; s3 = 3.94854 ± 316124i and s4 = 3.94854 ± 0.316124i. But the

factional conversion value must lie between 0 and 1. Therefore, the first solution

s1 = 0.27776 . . . satisfies this condition because it is meaningful in practice. The

computation results by the various IS when applied to solve the problem in (46) are

presented in Table 3.

Table 3. Comparison of IS results for Application 1

IS s0 |w(s1)| |w(s2)| |w(s3)| |w(s4)| |w(s5)| νcoc
SL8 3.8e− 1 2.5e− 05 4.8e− 033 3.8e− 0227 7.9e− 1586 8.0

YZS8 3.6e− 4 2.9e− 34 3.9e− 275 - - 8.0

SS8 2.9e− 3 3.4e− 26 1.2e− 209 3.6e− 1677 - 8.0

OS8a 0.8 3.0e− 3 2.9e− 26 2.2e− 210 2.4e− 1683 - 8.0

OS8b 3.0e− 3 2.5e− 26 7.2e− 211 3.3e− 1687 - 8.0

OS8c 1.3e− 3 2.8e− 29 1.4e− 234 5.0e− 1877 - 8.0

OS8d 1.3e− 3 4.9e− 29 1.7e− 232 3.8e− 1860 - 8.0

Application 2:(Conversion in a chemical reactor) Consider the example on chem-

ical reaction formulation presented in [18] as

w(s) = 4.45977− 5ln

(
0.4 (1− s)

0.4− 0.5s

)
+

s

1− s
= 0, (47)

where s (bounded between 0 and 1) is the species fractional conversion in a chemical

reactor. A solution satisfying (47) is s = 0.7573962463 . . .. The the computational

results obtained for the IS are given in Table 4.
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Table 4. Comparison of IS results for Application 2

IS s0 |w(s1)| |w(s2)| |w(s3)| |w(s4)| νcoc
SL8 Diverged -

YZS8 7.0e− 5 3.5e− 40 1.2e− 322 1.3e− 1998 8.0

SS8 1.2e− 3 3.1e− 29 6.1e− 234 1.4e− 1871 8.0

OS8a 0.78 1.2e− 3 5.1e− 30 6.1e− 241 2.4e− 1928 8.0

OS8b 1.2e− 3 6.6e− 30 4.9e− 240 4.2e− 1921 8.0

OS8c 3.3e− 3 1.6e− 26 6.3e− 213 3.9e− 1704 8.0

OS8d 3.3e− 3 7.5e− 26 5.9e− 207 8.2e− 1656 8.0

5. Conclusion

This work put forward two families of optimal order eight IS that require no eval-

uation of functions derivatives. The techniques used in their development includes

the approximation of function derivatives with interpolating polynomial, divided dif-

ference and weight functions. The flexibility of the weight functions, which involves

parameters, enables the construction of plethora of concrete forms of the developed

IS. The computational performance of the developed IS as compared with some well

established existing IS of same CO, shows that they can be used as good alternatives.
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