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On algebraic bounds for exponential function

with applications

Yogesh J. Bagul∗, Christophe Chesneau, and Ramkrishna M. Dhaigude

Abstract. In this paper, we establish algebraic bounds of the ratio-type in na-

ture for the natural exponential function ex involving two parameters, a and n,

which become optimal as a → 0 or n → ∞. The proof is mainly based on

Chebyshev’s integral inequality and properties of the incomplete gamma function.

Subsequently, we focus on the simple case obtained with n = 1, with comparisons

to existing literature results. For the applications, we provide alternative proofs

of inequalities involving ratio functions of trigonometric and hyperbolic functions.

Graphics are given to illustrate the theory.

1. Introduction

The exponential function is “the most significant function in mathematics”, ac-

cording to the prestigious mathematician Walter Rudin, due to its frequent occur-

rence in both pure and practical mathematics (see [11]). It can be found in a wide

range of applications in the fields of physics, chemistry, computer science, engineer-

ing, biology, medicine, finance, and economics. From a mathematical viewpoint,

when taken as such, it is a simple function. However, when it appears in a so-

phisticated mathematical expression (integral, series, partial derivative equations,

etc.), it can be particularly hard to manage. For this reason, numerous efforts have

been made to find sharp bounds of different natures. The topic is vast; numer-

ous bounds for the exponential function have already been established. See, e.g.,

2020 Mathematics Subject Classification. Primary: 33B10; Secondary: 11A99, 26D05, 26D07.
Key words and phrases. Algebraic bounds, optimal bounds, exponential function, ratio func-

tions.
∗Corresponding author

This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this

license, visit http://creativecommons.org/licenses/by/4.0/.

85



86 BAGUL, CHESNEAU, AND DHAIGUDE

[1, 2, 3, 5, 6, 7, 8, 9]. If we focus on ratio-type bounds, the inequality

ex ≤ 1

1− x
, x ∈ (0, 1), (1)

is the most famous and simplest one. Recent advances on this topic contain the

result shown by S.-H. Kim [7]. It can be stated as follows: for a ∈ (1/2, 1), we have

ex ≤ U(a, x) ≤ 1

1− x
, x ∈ (0, 1), (2)

where

U(a, x) = (1− a) + a

(
1 + (1− a)x

1− ax

)1/a

.

This result reveals that there is again room for improvement for the inequality in

(1). The present paper aims to fill this gap by demonstrating new and sharp ratio

lower and upper bounds for ex, upper bounds that also improve (1 − x)−1. These

results can be used to derive sharp bounds for other functions of interest. This claim

will be illustrated by the consideration of ratio functions involving trigonometric and

hyperbolic functions. In addition to the detailed proofs, graphics are provided to

support the theory when adapted.

The organization of the paper is as follows: Section 2 presents the main result

of the paper. A special case is emphasized in Section 3. Some bound comparisons

are made in Section 4. Applications beyond the exponential function are given in

Section 5. A conclusion is formulated in Section 6.

2. Results

Inspired by the result of S.-H. Kim [7], but with a completely different approach

in terms of proof, we establish the following proposition:

Proposition 2.1. Let a > 0 and n be a positive integer. Let us set

V (a, n, x) :=

(
(−1)n+1(n+ 1)! + anxn

anxn + (−1)n+1(n+ 1)!
∑n

k=0(−1)kakxk/(k!)

)1/a

, (3)

provided that it exists. Then,

• for x > 0 and n odd such that

xn >
1

an
(n+ 1)!

n∑
k=0

(−1)k+1ak
xk

k!
,

we have

ex ≤ V (a, n, x), (4)
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• for x > 0 and n even such that

xn <
1

an
(n+ 1)!,

we have

ex ≥ V (a, n, x). (5)

The upper bound V (a, n, x) is optimal as a → 0, or n → ∞.

Proof. The proof is based on the famous Chebyshev’s integral inequality [9]

and some properties of the incomplete gamma function. To begin, we recall the

mentioned Chebyshev’s integral inequality. If f, g are two integrable functions de-

fined on [p, q] with p, q > 0 such that both f, g are either increasing or decreasing

then ∫ q

p

f(t)g(t) dt ≥ 1

q − p

∫ q

p

f(t) dt

∫ q

p

g(t) dt. (6)

The inequality in (6) is reversed if one of the functions is decreasing and the other

one is increasing. The equality holds if and only if one of the functions is constant.

In this proof, we put p = 0, q = x and f(t) = tn, g(t) = eat where a > 0, x > 0

in (6). So we have ∫ x

0

tn eat dt ≥ 1

x

∫ x

0

tn dt

∫ x

0

eat dt.

It is worth noting that the first integral term is connected with the incomplete

gamma function: γ(m,x) =
∫ x

0
tm−1e−tdt. By the change of variables y = −at, and

a well-known decomposition of the incomplete gamma function taken at an integer,

we obtain ∫ x

0

tneatdt =
(−1)n+1

an+1

∫ −ax

0

yne−ydy =
(−1)n+1

an+1
γ(n+ 1,−ax)

=
(−1)n+1

an+1
n!

(
1− eax

n∑
k=0

(−1)kakxk

k!

)
.

On the hand, it is immediate that∫ x

0

tndt =
xn+1

n+ 1
,

∫ x

0

eatdt =
1

a
(eax − 1).

So, by the Chebyshev’s integral inequality, we have

(−1)n+1

an+1
n!

(
1− eax

n∑
k=0

(−1)kakxk

k!

)
≥ 1

x
× xn+1

n+ 1
× 1

a
(eax − 1),

which can be arranged as

(−1)n+1(n+ 1)! + anxn ≥ eax

(
anxn + (−1)n+1(n+ 1)!

n∑
k=0

(−1)kakxk

k!

)
. (7)
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On the one hand, for x > 0 and n odd such that

xn >
1

an
(n+ 1)!

n∑
k=0

(−1)k+1ak
xk

k!
,

the left and right terms in (7) are strictly positive, and we have

ex ≤ V (a, n, x).

On the other hand, for x > 0 and n even such that

xn <
1

an
(n+ 1)!,

the left and right terms in (7) are strictly negative (the negativity of the left term

implying the one of the right term, and the exponential function is always positive),

so the inequality reverse after division, and we get

ex ≥ V (a, n, x).

Also, we have

lim
a→0

V (a, n, x) = lim
n→∞

V (a, n, x) = ex.

Thus V (a, n, x) is an optimal upper bound for ex. This ends the proof of Proposition

2.1. □
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Figure 1. Graphs

of ex and the bounds

V (a, 1, x), V (a, 2, x)

and V (a, 3, x) in (3) for

a = 1 and x ∈ (0, 2).
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Figure 2. Graphs

of ex and the bounds

V (a, 1, x), V (a, 2, x)

and V (a, 3, x) in (3) for

a = 1 and x ∈ (0.5, 1).

We now list the expression for V (a, n, x) for the first values of n. We have

V (a, 1, x) =

(
2 + ax

2− ax

)1/a

,

which is valid if x ∈ (0, 2/a), and in this case, ex ≤ V (a, 1, x).
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We have

V (a, 2, x) =

(
6− a2x2

2a2x2 − 6ax+ 6

)1/a

,

which is valid for x ∈ (0,
√
6/a), and in this case, due to the value of n = 2, we have

ex ≥ V (a, 2, x). We have

V (a, 3, x) =

(
a3x3 + 24

3(2− ax)(a2x2 − 2ax+ 4)

)1/a

,

which is valid for x ∈ (0, 2/a), and in this case, ex ≤ V (a, 3, x).

These findings are illustrated for a = 1, with x ∈ (0, 2) in Figure 1 on the one

hand, and a zoom work for x ∈ (0.5, 1) in Figure 2 on the other hand.

3. Discussion on the case n = 1

The simplest case n = 1 seems to have not received a lot of attention from the

literature. It appeared in [9, p. 269] and also in the inequality sheets in [10]. After

a bit of algebra, for a = 1, it turns out to be equivalent to the following more

well-known hyperbolic inequality: tanhx < x for any x ∈ (0, 1). In this section, we

discuss this special case in the light of the recent findings of the literature.

The following proposition implies that the upper bound of ex in (5) is sharper

than that of (1).

Proposition 3.1. Let x ∈ (0, 1) and a ∈ (0, 1). Then it holds that

V (a, 1, x) :=

(
2 + ax

2− ax

)1/a

<
1

1− x
. (8)

Proof. We need to prove that

2 + ax

2− ax
<

(
1

1− x

)a

,

i.e.,

(2 + ax)(1− x)a < 2− ax

or

ax+ (2 + ax)(1− x)a − 2 < 0

for a and x in (0, 1). Let f(x) = ax+(2+ ax)(1−x)a− 2. By differentiation, we get

f ′(x) = a
(
1− (2 + ax)(1− x)a−1 + (1− x)a

)
.

Similarly, we have

f ′′(x) = (a− 1)(2 + ax)(1− x)a−2 − 2a(1− x)a−1 < 0,

as x ∈ (0, 1) and a ∈ (0, 1). From this, we conclude that f ′(x) is strictly decreasing in

(0, 1). Hence f ′(x) < f ′(0) = 0 for x > 0. Consequently, f(x) is strictly decreasing
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in (0, 1) and we write f(x) < f(0) = 0, for x > 0. This completes the proof of

Proposition 3.1. □

4. Some comparison

Clearly, we have V (a, 1, x) ≤ (1− x)−1 = U(1, x) by Proposition 3.1.

Since V (a, 1, x) is optimal as a → 0, we have

V (a, 1, x) :=

(
2 + ax

2− ax

)1/a

≤ 2 + x

2− x
; for a ∈ (0, 1] and x ∈ (0, 2/a).

Now by A. M. - G. M. inequality we get

U(1/2, x) =
1

2
+

1

2

(
2 + x

2− x

)2

≥ 2 + x

2− x
≥ V (a, 1, x)

for a ∈ (0, 1) and x ∈ (0, 2/a).

It should be noted that our upper bounds are valid in a larger interval if a ∈ (0, 1).

Figures 3, 4, 5, 6 show that our upper bound V (a, 1, x) for ex is sharper than the

corresponding one U(a, x).
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Figure 3. Graphs of

upper bounds of ex in

(2) and (8) for a = 1/2

and x ∈ (0, 1).
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Figure 4. Graphs of

upper bounds of ex in

(2) and (8) for a = 0.7

and x ∈ (0, 1).



ON ALGEBRAIC BOUNDS FOR EXPONENTIAL FUNCTION 91

0.0 0.2 0.4 0.6 0.8 1.0

1
.0

1
.5

2
.0

2
.5

x

e
x

U(0.8, x)
V(0.8, 1, x)

Figure 5. Graphs of

upper bounds of ex in

(2) and (8) for a = 0.8

and x ∈ (0, 1).
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Figure 6. Graphs of

upper bounds of ex in

(2) and (8) for a = 0.95

and x ∈ (0, 1).

5. Applications

In this section, we give applications of Proposition 2.1. The following inequalities:

ex
2 ≤ coshx

cosx
, x ∈

(
0,

π

2

)
(9)

and

ex
2/3 ≤ sinhx

sinx
, x ∈

(
0,

π

2

)
, (10)

were recently established by Bagul at. al. [4]. The proofs of these inequalities are

based on monotonicity of appropriately chosen functions. Here we give alternative

proofs of (9) and (10). First, we write the inequality in (5) as follows:

eax ≤ 1 + (a/2)x

1− (a/2)x
, x ∈

(
0,

2

a

)
. (11)

Using the following infinite products:

coshx =
∞∏
k=1

(
1 +

4

π2(2k − 1)2
x2

)
and cosx =

∞∏
k=1

(
1− 4

π2(2k − 1)2
x2

)
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and the inequality in (11), we have

coshx

cosx
=

∞∏
k=1

(
1 + 4

π2(2k−1)2
x2
)

(
1− 4

π2(2k−1)2
x2
) ≥

∞∏
k=1

e
8

π2(2k−1)2
x2

= e
∑∞

k=1
8x2

π2
1

(2k−1)2 = e
8x2

π2

∑∞
k=1

1
(2k−1)2 = ex

2

since
∑∞

k=1(2k − 1)−2 = π2/8. This yields the inequality in (9).

Similarly, using the following infinite products:

sinhx

x
=

∞∏
k=1

(
1 +

1

π2k2
x2

)
and

sinx

x
=

∞∏
k=1

(
1− 1

π2k2
x2

)
with the inequality in (11) and

∑∞
k=1 k

−2 = π2/6, we get

sinhx

sinx
=

∞∏
k=1

(
1 + 1

π2k2
x2
)(

1− 1
π2k2

x2
) ≥

∞∏
k=1

e
2

π2k2
x2

= e
∑∞

k=1
2x2

π2
1
k2 = e

2x2

π2

∑∞
k=1

1
k2 = ex

2/3.

This gives the desired inequality in (10).

6. Conclusion

New sharp bounds for the exponential functions are rare because a lot already

exist. In this paper, we nevertheless contribute to the topic by establishing new and

sharp lower and upper bounds of the ratio-type. The advantages of these traits are

being original, flexible, and sharp. “Original” because of the proof scheme; Cheby-

shev’s integral inequality and incomplete gamma function results are thoroughly

combined to obtain them, “flexible” in the sense that they depend on two tuning

parameters, and “sharp” in the sense that they improve some comparable bounds

of the literature. As illustrated in our application, these bounds can be used to

evaluate completely different functions, such as the ratio of trigonometric and hy-

perbolic functions. One can also think of special integral functions mixing ratio and

exponential functions, with the ratio bounds being more appropriate in this case.

These ideas about perspectives need further development, which we will leave for

future work.
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