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Solving conformable fractional Sturm-Liouville

equations using one class of special polynomials

and special functions

Arsalan Hojat Ansari and Snježana Maksimović∗

Abstract. The objective of this paper is to solve conformable fractional Sturm-

Liouville equations using one class of special polynomials and special functions

introduced in [13]. Also, the connection between Mittag-Leffler functions and

special polynomials are established and conformable fractional derivatives of cer-

tain Mittag-Leffler functions are determined.

1. Introduction

The fractional differential calculus has been developed to describe different phys-

ical phenomena. In the last three decades, the fractional differential calculus has

became of great importance in many fields of science and engineering, for example

mechanics, electricity, chemistry, biology, economics, control theory and signal and

image processing [14], [15]. The fractional differential calculus is nowadays one of

the most intensively developing areas of mathematical analysis, including several

definitions of fractional operators like Riemann-Liouville, Caputo, and Grünwald-

Letnikov [5]. These fractional derivatives are complicated, especially Grünwald-

Letnikov where some of the basic properties that usual derivatives have such as the

product rule and the chain rule are lost. This was one of the motivations for many

authors to introduce a new definition of the fractional derivative that would preserve

these properties.
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In [11] authors introduced a definition of a conformable fractional derivative

(CFD) which is a natural extension of the usual derivative and for which hold

multiplication rule, division rule, fractional Rolle theorem, and fractional average

value theorem. This definition coincides with the known fractional derivatives of

polynomials. Later, in [1] are defined the right and left conformable fractional

derivatives,the fractional chain rule, and fractional integrals of higher orders. In

[2] the authors discussed the Sturm-Liouville problems in the frame of conformable

derivatives (see also [9]).

In this paper, we focus our attention on the conformable fractional Sturm-

Liouville equations ( [12], [16])

(t2 + 1)2D2a
t y(t) +

(
2t2−a(1− n)− 2nt− (1− a)t−a(1 + t2)

)
Da

t (y(t))

+ 2nt2−2a(2− a)(2n− 1)y(t) = 0, t > 0,
(1)

and

(t2+1)2D2a
t (y(t))+(2t2−a−(1−a)t−a(t2+1))(1+t2)Da

t (y(t))+4n2t2−2ay(t) = 0, t > 0,

(2)

where Da
t is a conformable fractional derivative of f with respect to t of order

0 < a ≤ 1 and D2a
t (y(t)) = Da

t (D
a
t (y(t))).

For a = 1 the equation (1) comes down to the classical Sturm-Liouville differen-

tial equation of the second order

(t2 + 1)y′′(t)− 2(2n− 1)ty′(t) + 2n(2n− 1)y(t) = 0, (3)

since (2) comes down to

(t2 + 1)2y′′(t) + 2t(t2 + 1)y′(t) + 4n2y(t) = 0. (4)

This paper is organized as follows. In Section 2, we stated definitions and as-

sertions used throughout the study. In Section 3, we considered conformable frac-

tional Sturm-Liouville equations (1) and (2) and proved that special polynomials

Fn, n ∈ N, are solutions of the equation (1), since functions f0 = 1, fn, n ∈ N, are
solutions of equation (2) ([7], [13]) . Through Theorem 3.4 and Theorem 3.5 we

connected Mittag-Lefller functions (Tpj and Hpj, j = 0, 1, . . . , p − 1, p ∈ N) with

special polynomials Fn, n ∈ N0. At the end of this section we calculate the con-

formable fractional derivative and the conformable fractional Laplace transform of

functions Tpj and Hpj, j = 0, 1, . . . , p − 1, p ∈ N. Using the conformable fractional

Laplace transform we solved the conformable fractional differential equation whose

solutions are functions Hpj, j = 0, 1, . . . , p−1, p ∈ N. In the last section (Section 4),

we gave some more useful summation formulas for special polynomials Fn, n ∈ N0

and solved an open problem from the paper [4].
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2. Preliminaries

We employ the following notation: N, R and C for the sets of positive integers,

real and complex numbers, respectively. Also, N0 = N ∪ {0}. For a given complex

number z, we denote with ℜ(z) the real and with ℑ(z) the imaginary part. By

L2(R) we denote the space of a square integrable functions. A Laplace transform of

a function f is denoted by L(f(t))(s) = F (s) =
∫ +∞
0

f(t)estdt, s ∈ C.

2.1. One class of special polynomials and special functions. Special

polynomials Fn(t), n ∈ N, introduced in [7] and [13], are defined by:

F0(t) = 1, F2n(t) = ℜ((t− i)2n) =
n∑

k=0

(−1)n+k

(
2n

2k

)
t2k

F2n−1(t) = ℑ((t− i)2n) =
n∑

k=1

(−1)n+k+1

(
2n

2k − 1

)
t2k−1.

It is proved in [13] that these polynomials are solutions of the Sturm-Liouville

differential equation (3).

Theorem 2.1. [8] Polynomials Fn(x), n ∈ N0 satisfy (∀x, t ∈ R):
∞∑
n=0

F2n(x)

(2n)!
t2n = cos t · cosh(xt),

∞∑
n=1

F2n−1(x)

(2n)!
t2n = − sin t · sinh(xt),

∞∑
n=0

F2n(x)

n!
tn = exp(x2t− t) cos(2xt),

∞∑
n=1

F2n−1(x)

n!
t2 = − exp(x2t− t) sin(2xt).

Using polynomials Fn(t), n ∈ N, special functions are defined as follows [13]:

f0(t) = 1, f2n−1(t) = (−1)n−1 F2n−1(t)

(t2 + 1)n
, f2n(t) = (−1)n

F2n(t)

(t2 + 1)n
, n ∈ N. (5)

Notice that

f2n−1(t) = sin(2n arctan(t)), f2n(t) = cos(2n arctan(t)), n ∈ N. (6)

It is proved in [13] that functions (6) are solutions of the Sturm-Liouville differ-

ential equation (4) and form a basis of an L2(R) space, with respect to the weight

function ω(t) = 1
1+t2

. Also, in [13] it is shown that these function are utilized to

obtain one class of plane curves with the arc length parametrization.

2.2. Functions Tpj and Hpj as a special case of Mittag-Leffler functions.

Definition 2.1. [4] The functions Tpj, Hpj : R → R, j = 0, 1, 2, · · · , p−1, p ∈ N,
are defined as follows:

Tpj(t) =
∞∑
n=0

(−1)ntpn+j

(pn+ j)!
, Hpj(t) =

∞∑
n=0

tpn+j

(pn+ j)!
.
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Theorem 2.2. [4] For each t ∈ R, we have

T
′

p0(t) = −Tpp−1(t) H
′

p0(t) = Hpp−1(t)

T
′

p1(t) = Tp0(t) H
′

p1(t) = Hp0(t)

...
...

T
′

pp−1(t) = Tpp−2(t) H
′

pp−1(t) = Hpp−2(t).

Example 2.2. [4] For each t ∈ R, we have

T10(t) =
∞∑
n=0

(−1)ntn

n!
= e−t H10(t) =

∞∑
n=0

tn

n!
= et

T20(t) =
∞∑
n=0

(−1)nt2n

(2n)!
= cos t T21(t) =

∞∑
n=0

(−1)nt2n+1

(2n+ 1)!
= sin t

H20(t) =
∞∑
n=0

t2n

(2n)!
= cosh t H21(t) =

∞∑
n=0

t2n+1

(2n+ 1)!
= sinh t.

Theorem 2.3. [4] For each t ∈ R, we have

T40(t) = cos(

√
2

2
t) · cosh(

√
2

2
t).

Theorem 2.4. [4] For each t ∈ R, we have

T 3
30(t)− T 3

31(t) + T 3
32(t) + 3T30(t)T31(t)T32(t) = 1

H3
30(t) +H3

31(t) +H3
32(t)− 3H30(t)H31(t)H32(t) = 1.

Theorem 2.5. [4] Let p be a prime number and s ∈ C, then we have

L(Tpj(at))(s) =
sp−j−1aj

sp + ap
, j = 0, 1, ..., p− 1, p ≥ 3,

L(Hpj(at))(s) =
sp−j−1aj

sp − ap
, j = 0, 1, ..., p− 1, p ≥ 3

L(p
t
(1− Tp0(at)))(s) = ln(1 +

ap

sp
)

L(p
t
(1−Hp0(at)))(s) = ln(1− ap

sp
)

L(tTp0(at))(s) =
s2p−2 − (p− 1)apsp−1

(sp + ap)
.

Using Theorem 2.5 one can solve ordinary differential equations easily. We will

demonstrate it on the following two examples.

Example 2.3. The solution of the differential equation

y′′′(t)− y(t)− 1 = 0, y(0) = 1 , y′(0) = 2 , y′′(0) = 4 (7)
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is

y(t) = 2H30(t) + 2H31(t) + 4H32(t)− 1.

If we apply the Laplace transform on (7) we obtain

L(y′′′(t)−y(t)−1)(s) = s3L(y(t))(s)−s2y(0)−sy′(0)−y′′(0)−L(y(t))(s)−L(1)(s) = 0

from which it follows

L(y(t))(s) =
s2 + 2s+ 4 + 1

s

(s3 − 1)
=

s2

(s3 − 1)
+

2s

(s3 − 1)
+

4

(s3 − 1)
+

1

s(s3 − 1)
.

From Theorem 2.5 we have

y(t) = L−1(
s2

(s3 − 1)
) + L−1(

2s

(s3 − 1)
) + L−1(

4

(s3 − 1)
) + L−1(

1

s(s3 − 1)
)

= H30(t) + 2H31(t) + 4H32(t) +H30(t)− 1.

Example 2.4. The solution of the differential equation

y(5)(t)− y(t)− 5 = 0, y(0) = 1, y′(0) = 2, y′′(0) = 4, y′′′(0) = 6, y(4)(0) = 8

is

y(t) = 6H30(t) + 2H51(t) + 4H52(t) + 6H53(t) + 8H54(t)− 5.

Similarly, like in example 2.3 we have

L(y(t))(s) =
s4 + 2s3 + 4s2 + 6s+ 8 + 5

s

(s5 − 1)

=
s4

(s5 − 1)
+

2s3

(s5 − 1)
+

4s2

(s5 − 1)
+

6s

(s5 − 1)
+

8

(s5 − 1)
+

5

s(s5 − 1)
.

From Theorem 2.5 we obtain a result

y(t) = L−1(
s4

(s5 − 1)
) + L−1(

2s3

(s5 − 1)
) + L−1(

4s2

(s5 − 1)
) + L−1(

6s

(s5 − 1)
)

+L−1(
8

(s5 − 1)
) + L−1(

5

s(s5 − 1)
)

= H50(t) + 2H51(t) + 4H52(t) + 6H53(t) + 8H54(t) + 5H50(t)− 5.

2.3. A conformable fractional derivative.

Definition 2.5. [11] The CFD of y : [0,∞) → R with respect to t of order a is

defined

Da
t (y(t)) = lim

ε→0

y(t+ εt1−a)− y(t)

ε
, for all t > 0, 0 < a ≤ 1. (8)

Remark 2.6. If y is a differentiable then

Da
t (y(t)) = t1−ay′(t), for all t > 0, 0 < a ≤ 1, (9)

where by ′ we denote the classical derivative.
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Theorem 2.6. [10] Let 0 < a ≤ 1 and y(t) and ỹ(t) be a-conformable differen-

tiable at a point t > 0, then:

(i) Da
t (c) = 0, where c is a constant,

(ii) Da
t (t

c) = αtc−a, for all c ∈ R,
(iii) Da

t (αy(t) + βỹ(t)) = αDa
t (y(t)) + βDa

t (ỹ(t)), for all α, β ∈ R,
(iv) Da

t (y(t)ỹ(t)) = Da
t (y(t))ỹ(t) + y(t)Da

t (ỹ(t)),

(v) Da
t

(
y(t)

ỹ(t)

)
=

Da
t (y(t))ỹ(t)− y(t)Da

t (ỹ(t))

ỹ2(t)
, ỹ(t) ̸= 0.

Theorem 2.7. [10] Suppose that the function y : (0,+∞) → R is classical and

conformable differentiable. The conformable derivative of the function y ◦ ỹ is

Da
t (y ◦ ỹ)(t) = t1−ay′(ỹ(t))ỹ′(t).

Definition 2.7. [1] Let 0 < a ≤ 1 and y : [0,+∞) → R. The fractional Laplace
transform of the function y of an order a is defined by

La(y(t))(s) =

∫ +∞

0

e−s ta

a y(t)ta−1dt, s ∈ C.

Lemma 2.8. [1] Let y : [0,∞) → R be a function such that La(y(t))(s) exists.

Then

La(y(t))(s) = L(y((at)
1
a ))(s).

Theorem 2.9. ([3],[6]) Let y : [0,+∞) → R be a given function, 0 < a ≤ 1 and

s > 0. Then

La(D
a
t y(t))(s) = sLa(y(t))(s)− y(0),

La(D
2a
t y(t))(s) = s2La(y(t))(s)−Da

t y(0)− sy(0).

Theorem 2.10. [6] Let y : [0,+∞) → R be a continuous real valued differen-

tiable function and 0 < a ≤ 1, then for all n ∈ N and s > 0:

La(D
na
t y(t))(s) = snLa(y(t))(s)−

n−1∑
j=0

sjD
(n−j−1)a
t y(0).

3. Main results

Proposition 3.1. Polynomials F2n−1(t) and F2n(t), n ∈ N, t > 0, satisfy:

(t2 + 1)Da
t (F2n−1(t)) = 2nt1−a(F2n(t) + tF2n−1(t)) (10)

and

(t2 + 1)Da
t (F2n(t)) = 2nt1−a(tF2n(t)− F2n−1(t)). (11)
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Proof. Notice that

F2n(t) + iF2n−1(t) = (t− i)2n. (12)

From Remark 2.6 is

Da
t ((t− i)2n) = t1−a((t− i)2n)′ = 2nt1−a(t− i)2n−1

and from Theorem 2.6 it follows

Da
t (F2n(t)) + iDa

t (F2n−1(t)) = 2nt1−a(t− i)2n−1. (13)

By multiplying (13) with t− i and taking the real and imaginary parts we obtain

the system
tDa

t (F2n(t)) +Da
t (F2n−1(t)) = 2nt1−aF2n(t)

−Da
t (F2n(t)) + tDa

t (F2n−1(t)) = 2nt1−aF2n−1(t)
(14)

from which (10) and (11) follow. □

Theorem 3.2. Polynomials Fn(t), n ∈ N, t > 0, are solutions of the equation

(1).

Proof. We will prove the assertion only for polynomials F2n−1(t), since the

proof for polynomials F2n(t), n ∈ N, is the same. Applying a CDF of order a on

(10) gives

(t2 + 1)Da
t (D

a
t (F2n−1(t))) + 2t2−a(1− n)Da

t (F2n−1(t))− 2nt2−2a(2− a)F2n−1(t)

= 2n
(
(1− a)t1−2aF2n(t) + t1−aDa

t (F2n(t)
)
.

From (10) and (14) we obtain

2n
(
(1− a)t1−2aF2n(t) + t1−aDa

t (F2n(t)
)

=
(
2nt+ (1− a)t−a(1 + t2)

)
Da

t (F2n−1(t))− 4n2(2− a)t2−2aF2n−1(t)

from which it follows

(t2 + 1)2D2a
t (F2n−1(t)) +

(
2t2−a(1− n)− 2nt− (1− a)t−a(1 + t2)

)
Da

t (F2n−1(t))

+ 2nt2−2a(2− a)(2n− 1)F2n−1(t) = 0.

□

Theorem 3.3. Functions fn(t), t ∈ (tan kπ
n
, tan( π

4n
+ kπ

n
)), k ∈ Z, n ∈ N, are

solutions of the equation (2).

Proof. We will prove the assertion only for functions f2n−1(t), since the proof

for functions f2n(t), n ∈ N, is the same. Applying a CDF of order a on (6), by the

use of Theorem 2.7 we obtain

(t2 + 1)Da
t (f2n−1(t))− 2nt1−af2n(t) = 0 (15)

and

(t2 + 1)Da
t (f2n(t)) + 2nt1−af2n−1(t) = 0. (16)
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Applying a CDF of order a on (15), using Theorem 2.6 we obtain

(t2 + 1)Da
t (f2n−1(t)) + 2t2−aDa

t (f2n(t))− 2n((1− a)t1−2af2n(t) + t1−aDa
t (f2n(t)) = 0.

Then, (15) and (16) gives assertion. □

Through the following theorems we will establish the connection between func-

tions Tpj, Hpj and special polynomials Fn.

Theorem 3.4. For functions T20(t), T21(t), T40(t), T42(t) and polynomials Fn

holds:

T40(t) =
∞∑
n=0

F2n(1)

2n(2n)!
t2n T42(t) = −

∞∑
n=1

F2n−1(1)

2n(2n)!
t2n

T20(t) =
∞∑
n=0

F2n(1)

2nn!
tn T21(t) = −

∞∑
n=1

F2n−1(1)

2nn!
tn

Proof. Since F2n(1) = 2n cos nπ
2

and F2n−1(1) = −2n sin nπ
2
, n ∈ N, we obtain

an assertion. □

Remark 3.1. Using Theorem 2.1 and Theorem 3.4 we can also prove Theorem

2.3:

∞∑
n=0

F2n(1)

(2n)!

(
t√
2

)2n

= cos(
t√
2
) · cosh( t√

2
)

∞∑
n=0

cos nπ
2

(2n)!
t2n = cos(

t√
2
) · cosh( t√

2
)

T40(t) = cos(
t√
2
) · cosh( t√

2
)

Also, using Theorem 3.4 we can obtain T20(t) and T21(t)

∞∑
n=0

F2n(1)

n!

(
t

2

)n

= exp(t− t) cos t =⇒ T20(t) = cos t

∞∑
n=1

F2n−1(1)

n!

(
t

2

)n

= − exp(t− t) sin t =⇒ T21(t) = sin t.

Theorem 3.5. For every t ∈ R it holds that

T42(t) = sin(
t√
2
) · sinh( t√

42
).
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Proof. From Theorem 3.4 is
∞∑
n=1

F2n−1(1)

(2n)!

(
t√
2

)2n

= − sin(
t√
2
) · sinh( t√

2
)

−
∞∑
n=1

sin nπ
2

(2n)!
t2n = sin(

t√
2
) · sinh( t√

2
)

T42(t) = sin(
t√
2
) · sinh( t√

2
)

□

Remark 3.2. From Remark 3.1 and Theorem 3.5 we obtain the following equa-

tions:

T40(t) = T20(
t√
2
)H20(

t√
2
), T42(t) = T21(

t√
2
)H21(

t√
2
).

In the following examples we will determine the CFD for functions Tpj and Hpj:

Example 3.3. Let t > 0 and 0 < a ≤ 1, then:

Da
t (Tp0(qt)) = −qt1−aTpp−1(qt) Da

t (Hp0(qt)) = qt1−aHpp−1(qt)

Da
t (Tpp−1(qt)) = qt1−aTpp−2(qt) Da

t (Hpp−1(qt)) = qt1−aHpp−2(qt)

Da
t (Tpp−2(qt)) = qt1−aTpp−3(qt) Da

t (Hpp−2(qt)) = qt1−aHpp−3(qt)

...
...

Da
t (Tp1(qt)) = qt1−aTp0(qt) Da

t (Hp1(qt)) = qt1−aHp0(qt).

Using Theorem 2.7 and Theorem 2.2, for g(t) = Tp0(qt), we have

Da
t (Tp0(qt)) = Da

t g(t) = t1−ag′(t) = −qt1−aTpp−1(qt).

Example 3.4. Let t > 0 and 0 < a ≤ 1, then:

Da
t (Tp0(

1

a
ta)) = −Tpp−1(

1

a
ta) Da

t (Hp0(
1

a
ta)) = Hpp−1(

1

a
ta)

Da
t (Tpp−1(

1

a
ta)) = Tpp−2(

1

a
ta) Da

t (Hpp−1(
1

a
ta)) = Hpp−2(

1

a
ta)

Da
t (Tpp−2(

1

a
ta)) = Tpp−3(

1

a
ta) Da

t (Hpp−2(
1

a
ta)) = Hpp−3(

1

a
ta)

...
...

Da
t (Tp1(

1

a
ta)) = Tp0(

1

a
ta) Da

t (Hp1(
1

a
ta)) = Hp0(

1

a
ta).

Using Theorem 2.7 and Theorem 2.2, for Tpp−1(
1
a
ta), we have

Da
t (Tpp−1

1

a
ta) = Da

t g(t) = t1−ag′(t) = t1−ata−1Tpp−2(
1

a
ta) = Tpp−2(

1

a
ta)
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Theorem 3.6. Let t > 0, 0 < a ≤ 1 and p is a prime number. The fractional

Laplace of order a for certain functions are:

La(Tpj(c
ta

a
))(s) =

sp−j−1cj

sp + cp
, j = 0, 1, ..., p− 1, p ≥ 3,

La(Hpj(c
ta

a
))(s) =

sp−j−1cj

sp − cp
, j = 0, 1, ..., p− 1, p ≥ 3

La(
cp

ta
(1− Tp0(c

ta

a
)))(s) = ln(1 +

cp

sp
)

La(
ap

ta
(1− Tp0(c

ta

a
)))(s) = ln(1− cp

sp
)

La(
ta

a
Tp0(c

ta

a
))(s) =

s2p−2 − (p− 1)cpsp−1

(sp + cp)
.

Proof. Using Theorem 2.5 and Lemma 2.8 we obtain the proof. □

Using Theorem 3.6 one can solve the conformable fractional differential equa-

tions.

Example 3.5. Let 0 < a ≤ 1. The solution of the conformable fractional

differential equation

D5a
t (y(t))− y(t)− 2 = 0,

y(0) = 1, Da
t y(0) = 3, D2a

t y(0) = 7, D3a
t y(0) = 6, D4a

t y(0) = 8
(17)

is

y(t) = 3H50(
ta

a
) + 3H51(

ta

a
) + 7H52(

ta

a
) + 6H53(

ta

a
) + 8H54(

ta

a
)− 2.

If we apply a generalized conformable fractional Laplace transform on (17), using

Theorem 2.10 we obtain

0 =La(D
5a
t (y(t))− y(t)− 2)(s)

=(s5La(y(t))(s)− s4y(0)− s3Da
t y(0)− s2D2a

t y(0)− sD3a
t y(0)−D4a

t y(0))

− La(y(t))(s)− 2La(1)(s)

from which it follows

La(y(t))(s) =
s4 + 3s3 + 7s2 + 6s+ 8 + 2

s

(s5 − 1)

=
s4

(s5 − 1)
+

3s3

(s5 − 1)
+

7s2

(s5 − 1)
+

6s

(s5 − 1)
+

8

(s5 − 1)
+

2

s(s5 − 1)
.
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By the use of Theorem 3.6 we obtain a solution

y(t) = L−1
a (

s4

(s5 − 1)
) + L−1

a (
3s3

(s5 − 1)
) + L−1

a (
7s2

(s5 − 1)
) + L−1

a (
6s

(s5 − 1)
)

+ L−1
a (

8

(s5 − 1)
) + L−1(

5

s(s5 − 1)
)

= H50(
ta

a
) + 3H51(

ta

a
) + 7H52(

ta

a
) + 6H53(

ta

a
) + 8H54(

ta

a
) + 2H50(

ta

a
)− 2.

4. Appendix

Following [8] we give another interesting summation formulas:

Theorem 4.1. For every x, t ∈ R such that |(x− i)t| < π
2
it holds that

∞∑
n=1

(−1)n+1(22n − 1)B2nF2n(x)

(2n)!
t2n =

xt tan(xt)(1− tanh2(t))− t tanh(t)(1 + tan2(xt))

1 + (tanh(t) tan(xt))2
,

∞∑
n=1

(−1)n+1(22n − 1)B2nF2n−1(x)

(2n)!
t2n =

−xt tanh(t)(1 + tan2(xt))− t tan(xt)(1− tanh2(t))

1 + (tanh(t) tan(xt))2
,

(18)

where Bn are Bernoulli numbers.

Proof. From

tanx =
∞∑
n=1

(−1)n+1(22n − 1)B2n

(2n)!
x2n−1

we have

tan((x− i)t) =
∞∑
n=1

(−1)n+1(22n − 1)B2n

(2n)!
(x− i)2n−1t2n−1. (19)

Since tan((x− i)t) =
tan(xt)− tan(it)

1 + tan(it) tan(xt)
and tan(it) = i tanh(t), we have

tan(x− i)t =
tan(xt)− i tanh(t)

1 + i tanh(t) tan(xt)
· 1− i tanh(t) tan(xt)

1− i tanh(t) tan(xt)

=
tan(xt)(1− tanh2(t))

1 + (tanh(t) tan(xt))2
− i

tanh(t)(1 + tan2(xt))

1 + (tanh(t) tan(xt))2
.

If we multiply equation (19) by (x− i) and take the real and imaginary parts we

obtain (18). □

Remark 4.1. We give another proof for Theorem 2.4.
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Proof. Let λ ̸= 1, λ3 = 1, λ = −1±
√
3i

2
, λ2 = λ, λλ = 1, λ+λ = −1, following [4,

Remark 4.1] we have

eteλteλ
2t = 1.

Then

et = e−λte−λ2t

=
(
T30(t)− λT31(t) + λ2T32(t)

) (
T30(t)− λ2T31(t) + λT32(t)

)
=

(
T30(t)− λT31(t) + λT32(t)

) (
T30(t)− λT31(t) + λT32(t)

)
= T 2

30(t) + T 2
31(t) + T 2

32(t) + T30(t)T31(t)− T30(t)T32(t) + T31(t)T32(t).

Now

e−t = T30(t)− T31(t) + T32(t)

and by a3 − b3 + c3 + 3abc = (a− b + c)(a2 + b2 + c2 + ab− ac + bc) and ete−t = 1

we obtain the result. □

Theorem 4.2. (An open problem from [4]) There exists a polynomial of degree

q ≥ 5 such that

Pq(Tq0(t), Tq1(t), . . . , Tqq−1(t)) = 1.

Proof. We demonstrate a proof when q = 5.

Let λ ̸= 1, λ5 = 1,

λ = cos(
2π

5
) + i sin(

2π

5
) = a+ id λ2 = cos(

4π

5
) + i sin(

4π

5
) = −b+ ic

λ3 = cos(
6π

5
) + i sin(

6π

5
) = −b− ic λ4 = cos(

8π

5
) + i sin(

8π

5
) = a− id

where a = −1+
√
5

4
, b = 1+

√
5

4
, c =

√
10−2

√
5

4
, d =

√
10+2

√
5

4
. By the use [4, Remark 4.1]

we have

eteλteλ
2teλ

3teλ
4t = 1.

Then

et = e−λte−λ2te−λ3te−λ4t

=
(
T50(t)− λT51(t) + λ2T52(t)− λ3T53(t) + λ4T54(t)

)(
T50(t)− λ2T51(t) + λ4T52(t)− λT53(t) + λ3T54(t)

)(
T50(t)− λ3T51(t) + λT52(t)− λ4T53(t) + λ2T54(t)

)(
T50(t)− λ4T51(t) + λ3T52(t)− λ2T53(t) + λT54(t)

)
.
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Since(
T50(t)− λT51(t) + λ2T52(t)− λ3T53(t) + λ4T54(t)

)
=(T50(t)− (a+ id)T51(t) + (−b+ ic)T52(t)− (−b− ic)T53(t) + (a− id)T54(t))

= (T50(t)− aT51(t)− bT52(t) + bT53(t) + aT54(t))

+ i (−dT51(t) + cT52(t) + cT53(t)− dT54(t))

=A1 + iB1(
T50(t)− λ2T51(t) + λ4T52(t)− λT53(t) + λ3T54(t)

)
=(T50(t)− (−b+ ic)T51(t) + (a− id)T52(t)− (a+ id)T53(t) + (−b− ic)T54(t))

= (T50(t) + bT51(t) + aT52(t)− aT53(t)− bT54(t))

+ i (−cT51(t)− dT52(t)− dT53(t)− cT54(t))

=A2 + iB2(
T50(t)− λ3T51(t) + λT52(t)− λ4T53(t) + λ2T54(t)

)
=(T50(t)− (−b− ic)T51(t) + (a+ id)T52(t)− (a− id)T53(t) + (−b+ ic)T54(t))

= (T50(t) + bT51(t) + aT52(t)− aT53(t)− bT54(t))

+ i (cT51(t) + dT52(t) + dT53(t) + cT54(t))

=A3 + iB3(
T50(t)− λ4T51(t) + λ3T52(t)− λ2T53(t) + λT54(t)

)
=(T50(t)− (a− id)T51(t) + (−b− ic)T52(t)− (−b+ ic)T53(t) + (a+ id)T54(t))

= (T50(t)− aT51(t)− bT52(t) + bT53(t) + aT54(t))

+ i (dT51(t)− cT52(t)− cT53(t) + dT54(t))

=A4 + iB4,

then

et = (A1A2 −B1B2)(A3A4 −B3B4)− (A1B2 −B1A2)(A3B4 −B3A4).

This is polynomial of degree 4 (by T5j(t), j = 0, . . . , 4), so from

e−t = T50(t)− T51(t) + T52(t)− T53(t) + T54(t)

we conclude that ete−t is of degree 5. □

Now we can prove the Theorem 4.2.

Proof. Solutions of equation λq = 1 are

λk = cos
2π(k − 1)

q
+ i sin

2π(k − 1)

q
, k = 1, . . . q.
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Since, for λ ̸= 1
q−1∏
k=0

eλ
kt = e

λq−1
λ−1

t = 1

we have

et =

q−1∏
k=1

e−λkt =

q−1∏
k=1

q−1∑
j=0

(−1)jλkjTqj(t)

=

q−1∏
k=1

q−1∑
j=0

(−1)j
(
cos

2πj(k − 1)

q
+ i sin

2πj(k − 1)

q

)
Tqj(t).

(20)

As conjugate complex solutions of equation λq = 1 come in pairs, following

Remark 4.1 and proof of the theorem for q = 5 we conclude that a polynomial (20)

is a degree of q − 1 (by Tqj(t), j = 0, . . . , q − 1). Since

e−t =

q−1∑
j=0

(−1)jTqj(t),

form et · e−t = 1 we obtain the assertion. □

5. Conclusion

In [13] the authors constructed a novel class of special polynomials and spe-

cial functions. The uniqueness of those classes lies in the fact that these special

polynomials are not orthogonal (the special polynomials most commonly used are

orthogonal), but the corresponding class of special functions, with respect to the

weight function, is orthonormal. In this paper, through Theorems 3.2 and 3.3, con-

formable fractional Sturm -Liuoville equations (1) and (2) using novel classes of

special polynomials and special functions are solved.

With development the fractional calculus, the importance of the Mittag-Leffler

functions was fully understood, since the Mittag-Leffler function arises naturally in

the solution of fractional differential equations or fractional integral equations. So,

the authors connected the special polynomials introduced in [13] with Mittag-Leffler

functions (Theorems 3.4 and 3.5). Also, in the Theorem 3.6 conformable fractional

derivatives of certain Mittag-Leffler functions are determined.

In the end of the paper some interesting summation formulas, associated with

the novel class of special polynomials, are given and an open problem from [4] is

solved.
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