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Some fixed point theorems of rational type

contraction in complex valued b-metric spaces

Merad Souheib and Taieb Hamaizia∗

Abstract. The aim of this paper is to prove a common fixed point theorem

of rational type contraction in the context of complex valued b-metric spaces

and generalizing some results in the existing literature. Finally, We furnish an

interesting example in support of our main results.

1. Introduction and Preliminaries

In 2011, Azam et al. [1] defined the concept of a complex valued metric space

which is a broadening of the traditional metric space. This line of research has

inspired a lot of authors to generalize, extend and improve [1] in various ways, see

[2, 5, 7, 8, 10, 13, 16, 17, 18, 19]. Among them, Rao et al. [15] presented

the idea of complex valued b-metric space which was more general than the well

known complex valued metric spaces [1]. afterwards numbers of papers studied

many common fixed point results on b-metric spaces and complex b-metric spaces,

for more details, the reader may consult the papers [3, 4, 6, 9, 12, 14].

In this paper, motivated by the above facts, we extend and generalize the results

of Hamaizia et al. [11] in complex valued b-metric spaces. We’ll need some basic

definitions, results, and examples from the literature before we can prove the main

results.

Let C be the set of complex numbers and z1, z2 ∈ C. Define a partial order ≲
on C as follows:

z1 ≲ z2 if and only if Re(z1) ≤ Re(z2), Im(z1) ≤ Im(z2).
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Thus z1 ≲ z2 if one of the following holds:

i) Re(z1) = Re(z2), Im(z1) = Im(z2);

ii) Re(z1) < Re(z2), Im(z1) = Im(z2);

iii) Re(z1) = Re(z2), Im(z1) < Im(z2);

iv) Re(z1) < Re(z2), Im(z1) < Im(z2).

We will write z1 � z2 if z1 ̸= z2 and one of (ii), (iii), and (iv) is satisfied; also

we will write z1 ≺ z2 if only (iv) is satisfied.

Notice that 0 ≲ z1 � z2 implies |z1| < |z2| and z1 ≲ z2, z2 ≺ z3 implies z1 ≺ z3.

The following definition is recently introduced by Azam et al. [1].

Definition 1.1. Let X be a non empty set, A function d : X × X −→ C is

called complex valued metric space if for all x, y, z ∈ X, the following statements

hold true:

a) d(x, y) = 0 if and only if x = y,

b) d(x, y) = d(y, x),

c) d(x, y) ≲ d(x, z) + d(z, y).

The pair (X, d) is called complex valued metric space.

Example 1.2. [17] Let X = C. Define the mapping d : X ×X → C by

d (z1, z2) = exp (ik) |z1 − z2|2 ,

where k ∈
[
0, π

2

]
. Then (X, d) is a complex valued metric space.

Definition 1.3. [15] Let X be a non empty set, s ≥ 1 a fixed real number,

A function d : X × X −→ C is called complex valued b-metric space if for all

x, y, z ∈ X, the following statements hold true:

a) d(x, y) = 0 if and only if x = y

b) d(x, y) = d(y, x),

c) d(x, y) ≲ s [d(x, z) + d(z, y)].

The pair (X, d) is called complex valued b-metric space.

Example 1.4. [15] Let X = [0, 1] . Define the mapping d : X ×X → C by

d (x, y) = |x− y|2 + i |x− y|2 ,

for all x, y ∈ X. Then (X, d) is a complex valued b-metric space with s = 2.

Definition 1.5. [15] Let (X, d) be a complex valued b-metric space.

i) A point x ∈ X is called interior point of a set A ⊆ X whenever there exists

0 < r ∈ C such that B(x, r) = {y ∈ X : d(x, y) < r} ⊆ A.

ii) A point x ∈ X is called a limit point of a set A whenever for every 0 < r ∈ C,
B(x, r) ∩ (A− {x}) ̸= ϕ.

iii) A subset A ⊆ X is called an open set whenever each element of A is an

interior point of a set A.
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iv) A subset A ⊆ X is called closed set whenever each limit point of A belongs

to A.

v) A sub-basis for Hausdorff topology τ on X is a family

F = {B(x, r) : x ∈ X and 0 < r}.

Definition 1.6. [15] Let (X, d) be a complex valued b-metric space, and let

{xn} be a sequence in X and x ∈ X.

i) If for every c ∈ C, with 0 < c there is N ∈ N such that for all n > N ,

d(xn, x) < c, then {xn} is said to be convergent and converges to x. We denote this

by limn→+∞ xn = x or {xn} → x as n → +∞.

ii) If for every c ∈ C, with 0 < c there is N ∈ N such that for all n > N ,

d(xn, xn+m) < c where m ∈ N, then{xn} is said to be Cauchy sequence.

iii) If every Cauchy sequence in X is convergent in X, then (X, d) is said to be

complete complex valued b-metric space.

Lemma 1.1. [15] Let (X, d) be a complex valued b-metric space and let {xn}
be a sequence in X. Then {xn} converges to x if and only if |d(xn, x)| → 0 as

n → +∞.

Lemma 1.2. [15] Let (X, d) be a complex valued b-metric space, and let {xn}
be a sequence in X. Then {xn} is Cauchy sequence if and only if |d(xn, xn+m)| → 0

as n → +∞, where m ∈ N.

2. Main results

Now, we are ready to present our main results as follows

Theorem 2.1. Let (X, d) be a complete complex valued b-metric space with a

coefficient s ≥ 1, and T : X → X be a mappings on X satisfying the condition

d(Tx, Ty) ≲ ad (x, y) + b
d (x, Tx) d (x, Ty) + d (y, Ty) d (y, Tx)

d (x, Ty) + d (y, Tx)
, (1)

for all, x, y in X and a, b ≥ 0, d (x, Sy) + d (y, Tx) ̸= 0 with s (a+ b) < 1. Then T

has a unique fixed point.

Proof. Let x0 ∈ X be an arbitrary point in X. We define the sequence {xn} in

X such that

x2n+1 = Tx2n, for all n ∈ N.
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Now, we show that the sequence {xn} is Cauchy

d (x2n+1, x2n+2) = d(Tx2n, Tx2n+1)

≲ ad (x2n, x2n+1) + b
d (x2n, Tx2n) d (x2n, Tx2n+1)

d (x2n, Tx2n+1) + d (x2n+1, Tx2n)

+b
d (x2n+1, Tx2n+1) d (x2n+1, Tx2n)

d (x2n, Tx2n+1) + d (x2n+1, Tx2n)

= ad (x2n, x2n+1) + b
d (x2n, x2n+1) d (x2n, x2n+2)

d (x2n, x2n+2) + d (x2n+1, x2n+1)

+b
d (x2n+1, x2n+2) d (x2n+1, x2n+1)

d (x2n, x2n+2) + d (x2n+1, x2n+1)

= (a+ b) d (x2n, x2n+1) .

Thus,

d (x2n+1, x2n+2) ≲ (a+ b) d (x2n, x2n+1) . (2)

By using lemma (1.2), implies that

|d (x2n+1, x2n+2)| ≤ |(a+ b) d (x2n, x2n+1)|
≤ (a+ b) |d (x2n, x2n+1)| .

Since a+ b < 1,

|d (x2n+1, x2n+2)| ≤ (a+ b) |d (x2n, x2n+1)| . (3)

Thus, for any n ∈ N, we obtain

|d (x2n+1, x2n+2)| ≤ (a+ b) |d (x2n, x2n+1)| ≤ (a+ b)2 |d (x2n−1, x2n−2)| (4)

≤ ... ≤ (a+ b)2n+1 |d (x1, x0)| .

Then, for any m > n

|d (xn, xm)| ≤ s |d (xn, xn+1)|+ s |d (xn+1, xm)|
≤ s |d (xn, xn+1)|+ s2 |d (xn+1, xn+2)|+ s2 |d (xn+2, xm)|
≤ s |d (xn, xn+1)|+ s2 |d (xn+1, xn+2)|+ s3 |d (xn+2, xn+3)|

+s3 |d (xn+3, xm)|
≤ s |d (xn, xn+1)|+ s2 |d (xn+1, xn+2)|+ s3 |d (xn+2, xn+3)|

+...+ sm−n−1 |d (xm−2, xm−1)|+ sm−n |d (xm−1, xm)| .
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By (4) , we have

|d (xn, xm)| ≤ s (a+ b)n |d (x0, x1)|+ s2 (a+ b)n+1 |d (x0, x1)|
+s3 (a+ b)n+2 |d (x0, x1)|+ ...+ sm−n−1 (a+ b)m−2 |d (x0, x1)|
+sm−n (a+ b)m−1 |d (x0, x1)|

=
m−n∑
i=1

si (a+ b)i+n−1 |d (x0, x1)| .

Therefore,

|d (xn, xm)| ≤
m−n∑
i=1

si+n−1 (a+ b)i+n−1 |d (x0, x1)|

=
m−1∑
p=n

sp (a+ b)p |d (x0, x1)|

≤
∞∑
p=n

[s (a+ b)]p |d (x0, x1)| =
[s (a+ b)]p

1− s (a+ b)
|d (x0, x1)| .

From which we can deduce that

|d (xn, xm)| ≤
[s (a+ b)]p

1− s (a+ b)
|d (x0, x1)| → 0 as m,n → +∞

Thus {xn} is a Cauchy sequence in X. Since X is complete, there exists u ∈ X

such that xn → u as n → +∞. Assume that, there exists z ∈ X such that

|d (u, Tu)| = |z| > 0. (5)

Using the triangular inequality and (1), we find

z = d (u, Tu) ≲ sd (u, x2n+2) + s |d (x2n+2, Tu)|
= sd (u, x2n+2) + sd (Tu, Sx2n+1)

≲ sd (u, x2n+2) + sad (u, x2n+1)

+sb
d (u, Tu) d (u, Sx2n+1) + d (x2n+1, Sx2n+1) d (x2n+1, Tu)

d (u, Sx2n+1) + d (x2n+1, Tu)

= sd (u, x2n+2) + sad (u, x2n+1)

+sb
d (u, Tu) d (u, x2n+2) + d (x2n+1, x2n+2) d (x2n+1, Tu)

d (u, x2n+2) + d (x2n+1, Tu)
,

which implies that

|z| = |d (u, Tu)|
≤ s |d (u, x2n+2)|+ sa |d (u, x2n+1)|

+sb
|d (u, Tu)| |d (u, x2n+2)|+ |d (x2n+1, x2n+2)| |d (x2n+1, Tu)|

|d (u, x2n+2) + d (x2n+1, Tu)|
. (6)
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Taking the limit of (6) as n → +∞, we get that |z| = |d(u, Tu)| ≤ 0, a contra-

diction with (5). So |z| = 0. Hence,

Tu = u.

To prove the uniqueness of common fixed point, assume that v ∈ X be another

fixed point of T that is

v = Tv

It follows that

d (u, v) = d (Tu, Tv)

≲ ad (u, v) + b
d (u, Tu) d (u, Tv) + d (v, Tv) d (v, Tu)

d (u, Tv) + d (v, Tu)

= ad (u, v) .

Since a < 1, we have d (u, v) = 0 Thus, T has a unique fixed point in X. □

Theorem 2.2. Let(X, d) be a complete complex valued b-metric space with s ≥ 1,

and T, S : X → X be two mappings on X satisfying the condition

d(Tx, Sy) ≲ ad (x, y) + b
d (x, Tx) d (x, Sy) + d (y, Sy) d (y, Tx)

d (x, Sy) + d (y, Tx)
, (7)

for all, x , y in X and a, b ≥ 0, d (x, Sy) + d (y, Tx) ̸= 0 with s (a+ b) < 1. Then T

and S have a unique common fixed point.

Proof. Let x0 ∈ X be an arbitrary point in X. We define the sequence {xn} in

X such that

x2n+1 = Tx2n,

x2n+2 = Sx2n+1, for all n ∈ N.

Putting n = 2k, with x = x2k and y = x2k+1 we get

d (x2k+1, x2k+2) = d(Tx2k, Sx2k+1)

≲ ad (x2k, x2k+1) + b
d (x2k, Tx2k) d (x2k, Sx2k+1)

d (x2k, Sx2k+1) + d (x2k+1, Tx2k)

+b
d (x2k+1, Sx2k+1) d (x2k+1, Tx2k)

d (x2k, Sx2k+1) + d (x2k+1, Tx2k)

= ad (x2k, x2k+1) + b
d (x2k, x2k+1) d (x2k, x2k+2)

d (x2k, x2k+2) + d (x2k+1, x2k+1)

+b
d (x2k+1, x2k+2) d (x2k+1, x2k+1)

d (x2k, x2k+2) + d (x2k+1, x2k+1)

= (a+ b) d (x2k, x2k+1) .
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Thus,

d (x2k+1, x2k+2) ≲ (a+ b) d (x2k, x2k+1) . (8)

If xn = xn+1 for some n, with n = 2k then from (8) , we have

d (x2k+1, x2k+2) = 0.

which implies that x2k+1 = x2k+2. For n = 2k + 1, by using the same arguments

as in the case n = 2k, we get the same result. Continuing in this way we can show

that x2k−1 = x2k = x2k+1 = .... Then, {xn} is a Cauchy sequence. Now assume that

x2k ̸= x2k+1 for all n ∈ N. First, we want to show that

d (xn, xn+1) ≲ (a+ b) d (xn−1, xn) , for all n ∈ N (9)

We consider two cases,

case 1. n = 2k + 1, k ∈ N. From (8), we have

d (xn, xn+1) ≲ (a+ b) d (xn−1, xn) , n = 2k + 1, k ∈ N (10)

case 2. n = 2k, k ∈ N. From (8), we have

d (xn+1, xn+2) ≲ (a+ b) d (xn, xn+1) (11)

≲ d (xn, xn+1) ≲ (a+ b) d (xn−1, xn) , n = 2k, k ∈ N.

So, from (10) , (11), we conclude that

d (xn, xn+1) ≲ (a+ b) d (xn−1, xn) , for all n ∈ N.

Thus, we obtain that(9) holds. Now, we show that the sequence {xn} is a Cauchy
sequence. By using lemma (1.2) and (8) we obtain

|d (xn, xn+1)| ≤ |(a+ b) d (xn−1, xn)|
≤ (a+ b) |d (xn−1, xn)| .

Since a+ b < 1,

|d (xn, xn+1)| ≤ (a+ b) |d (xn−1, xn)| . (12)

Thus, for any m > n,

|d (xn, xm)| ≤ s |d (xn, xn+1)|+ s |d (xn+1, xm)|
≤ s |d (xn, xn+1)|+ s2 |d (xn+1, xn+2)|+ s2 |d (xn+2, xm)|
≤ s |d (xn, xn+1)|+ s2 |d (xn+1, xn+2)|+ s3 |d (xn+2, xn+3)|

+s3 |d (xn+3, xm)|
≤ s |d (xn, xn+1)|+ s2 |d (xn+1, xn+2)|+ s3 |d (xn+2, xn+3)|

+ · · ·+ sm−n−1 |d (xm−2, xm−1)|+ sm−n |d (xm−1, xm)| .
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By (12) , we find

|d (xn, xm)| ≤ s (a+ b)n |d (x0, x1)|+ s2 (a+ b)n+1 |d (x0, x1)|
+s3 (a+ b)n+2 |d (x0, x1)|+ ...+ sm−n−1 (a+ b)m−2 |d (x0, x1)|
+sm−n (a+ b)m−1 |d (x0, x1)|

=
m−n∑
i=1

si (a+ b)i+n−1 |d (x0, x1)| .

Therefore,

|d (xn, xm)| ≤
m−n∑
i=1

si+n−1 (a+ b)i+n−1 |d (x0, x1)|

=
m−1∑
p=n

sp (a+ b)p |d (x0, x1)|

≤
∞∑
p=n

[s (a+ b)]p |d (x0, x1)| =
[s (a+ b)]p

1− s (a+ b)
|d (x0, x1)| .

So,

|d (xn, xm)| ≤
[s (a+ b)]p

1− s (a+ b)
|d (x0, x1)| → 0 as m,n → +∞

Thus, {xn} is a Cauchy sequence in X. Since X is complete, there exists u ∈ X

such that xn → u as n → +∞. Then, there exists z ∈ X such that

|d (u, Tu)| = |z| > 0. (13)

So, by using the triangular inequality and (7), we receive

z = d (u, Tu) ≲ sd (u, x2n+2) + s |d (x2n+2, Tu)|
= sd (u, x2n+2) + sd (Tu, Sx2n+1)

≲ sd (u, x2n+2) + sad (u, x2n+1)

+sb
d (u, Tu) d (u, Sx2n+1) + d (x2n+1, Sx2n+1) d (x2n+1, Tu)

d (u, Sx2n+1) + d (x2n+1, Tu)

= sd (u, x2n+2) + sad (u, x2n+1)

+sb
d (u, Tu) d (u, x2n+2) + d (x2n+1, x2n+2) d (x2n+1, Tu)

d (u, x2n+2) + d (x2n+1, Tu) ,

which implies that

|z| = |d (u, Tu)|
≤ s |d (u, x2n+2)|+ sa |d (u, x2n+1)|

+sb
|d (u, Tu)| |d (u, x2n+2)|+ |d (x2n+1, x2n+2)| |d (x2n+1, Tu)|

|d (u, x2n+2) + d (x2n+1, Tu)|
. (14)
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Taking the limit of (14) as n → +∞, we get that|z| = |d(u, Tu)| ≤ 0, a contra-

diction with (13). We conclude |z| = 0. Hence Tu = u, Similarly, one can also show

that Su = u.

To achieve uniqueness of common fixed point, let v ∈ X be another common

fixed point of S and T that is

v = Tv = Sv.

Then,

d (u, v) = d (Tu, Sv)

≲ ad (u, v) + b
d (u, Tu) d (u, Sv) + d (v, Sv) d (v, Tu)

d (u, Sv) + d (v, Tu)

= ad (u, v) .

Since a < 1, we have

d (u, v) = 0.

We conclude that T and S have a unique common fixed point in X. □

Theorem 2.3. Let(X, d) be a complete complex valued b-metric space with a

coefficient s ≥ 1, and T, S : X → X be two mappings on X satisfying the condition

d(Tx, Sy) ≲ ad (x, y) + b
d (y, Sy) [1 + d (x, Tx)]

1 + d (x, y)
+ c

d (y, Sy) + d (y, Tx)

1 + d (y, Sy) d (y, Tx)
, (15)

for all, x, y in X and a, b, c ≥ 0, and s (a+ b+ c) < 1. Then T and S have a unique

common fixed point.

Proof. Let x0 ∈ X be an arbitrary point in X. Define by induction a sequence

{xn} in X such that

x2n+1 = Tx2n,

x2n+2 = Sx2n+1, for all n ∈ N.

By putting n = 2k, with x = x2k and y = x2k+1 we get

d (x2k+1, x2k+2) = d(Tx2k, Sx2k+1)

≲ ad (x2k, x2k+1) + b
d (x2k+1, Sx2k+1) [1 + d (x2k, Tx2k)]

1 + d (x2k, x2k+1)

+c
d (x2k+1, Sx2k+1) + d (x2k+1, Tx2k)

1 + d (x2k+1, Sx2k+1) d (x2k+1, Tx2k)

= ad (x2k, x2k+1) + b
d (x2k+1, x2k+2) [1 + d (x2k, x2k+1)]

1 + d (x2k, x2k+1)

+c
d (x2k+1, x2k+2) + d (x2k+1, x2k+1)

1 + d (x2k+1, x2k+2) d (x2k+1, x2k+1)

= ad (x2k, x2k+1) + bd (x2k+1, x2k+2) + cd (x2k+1, x2k+2) .
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Thus,

d (x2k+1, x2k+2) ≲
a

1− (b+ c)
d (x2k, x2k+1) . (16)

If xn = xn+1 for some n, with n = 2k then from (16) ,we have d (x2k+1, x2k+2) = 0,

so that x2k+1 = x2k+2. For n = 2k + 1, by using the same arguments as in the case

n = 2k,, we find the same result. Continuing in this way, we get x2k−1 = x2k =

x2k+1 = · · · . We find that {xn} is a Cauchy sequence. Assume that x2k ̸= x2k+1 for

all n ∈ N. First, we want to show that

d (xn, xn+1) ≲
a

1− (b+ c)
d (xn−1, xn) , for all n ∈ N (17)

There are two cases which we have to consider.

case 1. n = 2k + 1, k ∈ N. From (16), we have

d (xn, xn+1) ≲
a

1− (b+ c)
d (xn−1, xn) , n = 2k + 1, k ∈ N. (18)

case 2. n = 2k, k ∈ N. For (16), we get

d (xn+1, xn+2) ≲
a

1− (b+ c)
d (xn, xn+1)

≲ d (xn, xn+1) ≲
a

1− (b+ c)
d (xn−1, xn) , n = 2k, k ∈ N. (19)

So, from (18) , (19) we conclude that

d (xn, xn+1) ≲
a

1− (b+ c)
d (xn−1, xn) , for all n ∈ N.

Thus, we obtain that (17) holds. Now, we show that the sequence {xn} is a

Cauchy sequence. Using lemma (1.2) and (17), we obtain

|d (xn, xn+1)| ≤
∣∣∣∣( a

1− (b+ c)

)
d (xn−1, xn)

∣∣∣∣
≤

(
a

1− (b+ c)

)
|d (xn−1, xn)|

Since a+ b < 1,

|d (xn, xn+1)| ≤ h |d (xn−1, xn)| . (20)

where h = a
1−(b+c)

< 1
s
≤ 1, because s (a+ b+ c) < 1. Thus, for any m > n,m, n ∈

N,

|d (xn, xm)| ≤ s |d (xn, xn+1)|+ s |d (xn+1, xm)|
≤ s |d (xn, xn+1)|+ s2 |d (xn+1, xn+2)|+ s2 |d (xn+2, xm)|
≤ s |d (xn, xn+1)|+ s2 |d (xn+1, xn+2)|+ s3 |d (xn+2, xn+3)|

+s3 |d (xn+3, xm)|
≤ s |d (xn, xn+1)|+ s2 |d (xn+1, xn+2)|+ s3 |d (xn+2, xn+3)|

+...+ sm−n−1 |d (xm−2, xm−1)|+ sm−n |d (xm−1, xm)| .
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By (20), we get

|d (xn, xm)| ≤ s (h)n |d (x0, x1)|+ s2 (h)n+1 |d (x0, x1)|
+s3 (h)n+2 |d (x0, x1)|+ ...+ sm−n−1 (h)m−2 |d (x0, x1)|
+sm−n (h)m−1 |d (x0, x1)|

=
m−n∑
i=1

si (h)i+n−1 |d (x0, x1)| .

Then,

|d (xn, xm)| ≤
m−n∑
i=1

si+n−1 (h)i+n−1 |d (x0, x1)|

=
m−1∑
p=n

sp (h)p |d (x0, x1)|

≤
∞∑
p=n

[s (h)]p |d (x0, x1)| =
[s (h)]p

1− s (h)
|d (x0, x1)|

So,

|d (xn, xm)| ≤
[s (h)]p

1− s (h)
|d (x0, x1)| → 0 as m,n → +∞.

Thus, {xn}is a Cauchy sequence in X. Since X is complete, there exists u ∈ X

such that xn → u as n → +∞.

By assumption, there exists z ∈ X such that

|d (u, Tu)| = |z| > 0. (21)

So, by using the triangular inequality and (15), we receive

z = d (u, Tu) ≲ sd (u, x2n+2) + s |d (x2n+2, Tu)|
= sd (u, x2n+2) + sd (Tu, Sx2n+1)

≲ sd (u, x2n+2) + sad (u, x2n+1)

+sb
d (x2n+1, Sx2n+1) [1 + d (u, Tu)]

1 + d (u, x2n+1)
+ sc

d (x2n+1, Sx2n+1) + d (x2n+1, Tu)

1 + d (x2n+1, Sx2n+1) d (x2n+1, Tu)

which implies that

|z| = |d (u, Tu)|
≤ s |d (u, x2n+2)|+ sa |d (u, x2n+1)|

+sb
|d (x2n+1, Sx2n+1)| |1 + d (u, Tu)|

|1 + d (u, x2n+1)|
+ sc

|d (x2n+1, Sx2n+1)|+ |d (x2n+1, Tu)|
|1 + d (x2n+1, Sx2n+1) d (x2n+1, Tu)|

(22)

Taking the limit of (22) as n → +∞, we get that|z| = |d(u, Tu)| ≤ sc|d(u, Tu)|,
a contradiction since sc < 1. It follows |z| = 0. Hence Tu = u.
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On similar steps, we get

|d(u, Su)| ≤ s (b+ c) |d(u, Su)| .

Since s (b+ c) < 1, |d(u, Su)| = 0 thus Su = u. To prove the uniqueness of fixed

point, let v ∈ X be another common fixed point of S and T , it becomes

v = Tv = Sv

Then

d (u, v) = d (Tu, Sv)

≲ ad (u, v) + b
d (v, Sv) [1 + d (u, Tu)]

1 + d (u, v)
+ c

d (v, Sv) + d (v, Tu)

1 + d (v, Sv) d (v, Tu)
,

= (a+ c) d (u, v) .

Since 0 < a+c < 1, we have d (u, v) = 0. Thus, the maps T and S have a unique

common fixed point in X. This completes the proof.

□

The following example illustrates the result of 2.1.

Example 2.1. Let X = [0, 1] . Define the mapping d : X ×X → C by

d (x, y) = 3
{
|x− y|3 + i |x− y|3

}
,

for all x, y ∈ X. Then (X, d) is a complex valued b-metric space with s = 4 To verify

that (X, d) is a complete complex valued b-metric space with s = 4, it is enough to

verify the triangular inequality condition:

1

3
d (x, y) = |x− y|3 + i |x− y|3

= |x− y + z − z|3 + i |x− y + z − z|3

≼ 22
(
|x− z|3 + |z − y|3

)
+ i22

(
|x− z|3 + |z − y|3

)
≼ 4

[(
|x− z|3 + i |x− z|3

)
+
(
|z − y|3 + i |z − y|3

)]
= 4 [d (x, z) + d (z, y)] .

Therefore s = 4. Now, define T : X → X as Tx = x
4
,Ty = y

4
, for all x, y ∈ X.

Then

d (Tx, Ty) = d
(x
4
,
y

4

)
1

3
d (Tx, Ty) =

{∣∣∣x
4
− y

4

∣∣∣3 + i
∣∣∣x
4
− y

4

∣∣∣3}
=

1

4

{
|x− y|3 + i |x− y|3

}
d (Tx, Ty) =

3

4
d (x, y) ,
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Under the condition (1) , we have

d(Tx, Ty) ≲
1

3
d
(x
4
,
y

4

)
+

1

4

d
(
x, x

4

)
d
(
x, y

4

)
+ d

(
y, y

4

)
d
(
y, x

4

)
d
(
x, y

4

)
+ d

(
y, x

4

) .

Then

s (a+ b) = 4

(
1

4
.
1

3

)
=

1

3
< 1.

Thus, all the conditions of Theorem 2.1 are satisfied with the coefficients s =

4, a = 1
3
and b = 1

4
. Observe that the point 0 ∈ X, remains fixed under T and is

indeed unique.
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