Mathematical Analysis and its Contemporary Applications Volume 5, Issue 1, 2023, 51–64 doi: 10.30495/maca.2022.1973964.1066 ISSN 2716-9898

Some fixed point theorems of rational type contraction in complex valued b-metric spaces

Merad Souheib and Taieb Hamaizia*

ABSTRACT. The aim of this paper is to prove a common fixed point theorem of rational type contraction in the context of complex valued b-metric spaces and generalizing some results in the existing literature. Finally, We furnish an interesting example in support of our main results.

1. Introduction and Preliminaries

In 2011, Azam et al. [1] defined the concept of a complex valued metric space which is a broadening of the traditional metric space. This line of research has inspired a lot of authors to generalize, extend and improve [1] in various ways, see [2, 5, 7, 8, 10, 13, 16, 17, 18, 19]. Among them, Rao et al. [15] presented the idea of complex valued *b*-metric space which was more general than the well known complex valued metric spaces [1]. afterwards numbers of papers studied many common fixed point results on b-metric spaces and complex b-metric spaces, for more details, the reader may consult the papers [3, 4, 6, 9, 12, 14].

In this paper, motivated by the above facts, we extend and generalize the results of Hamaizia et al. [11] in complex valued b-metric spaces. We'll need some basic definitions, results, and examples from the literature before we can prove the main results.

Let \mathbb{C} be the set of complex numbers and $z_1, z_2 \in \mathbb{C}$. Define a partial order \leq on \mathbb{C} as follows:

 $z_1 \lesssim z_2$ if and only if $Re(z_1) \leq Re(z_2)$, $Im(z_1) \leq Im(z_2)$.

2020 Mathematics Subject Classification. Primary: 47H09; Secondary: 47H10.

Key words and phrases. Common fixed point, Rational type contraction, Complex valued bmetric space.

*Corresponding author

This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Thus $z_1 \leq z_2$ if one of the following holds: i) $Re(z_1) = Re(z_2), Im(z_1) = Im(z_2);$ ii) $Re(z_1) < Re(z_2), Im(z_1) = Im(z_2);$ iii) $Re(z_1) = Re(z_2), Im(z_1) < Im(z_2);$ iv) $Re(z_1) < Re(z_2), Im(z_1) < Im(z_2).$

We will write $z_1 \leq z_2$ if $z_1 \neq z_2$ and one of (*ii*), (*iii*), and (*iv*) is satisfied; also we will write $z_1 \prec z_2$ if only (*iv*) is satisfied.

Notice that $0 \leq z_1 \leq z_2$ implies $|z_1| < |z_2|$ and $z_1 \leq z_2$, $z_2 \prec z_3$ implies $z_1 \prec z_3$. The following definition is recently introduced by Azam et al. [1].

Definition 1.1. Let X be a non empty set, A function $d : X \times X \longrightarrow \mathbb{C}$ is called complex valued metric space if for all $x, y, z \in X$, the following statements hold true:

a) d(x, y) = 0 if and only if x = y, b) d(x, y) = d(y, x), c) $d(x, y) \leq d(x, z) + d(z, y)$.

The pair (X, d) is called complex valued metric space.

Example 1.2. [17] Let $X = \mathbb{C}$. Define the mapping $d: X \times X \to \mathbb{C}$ by

 $d(z_1, z_2) = \exp(ik) |z_1 - z_2|^2$,

where $k \in [0, \frac{\pi}{2}]$. Then (X, d) is a complex valued metric space.

Definition 1.3. [15] Let X be a non empty set, $s \ge 1$ a fixed real number, A function $d : X \times X \longrightarrow \mathbb{C}$ is called complex valued *b*-metric space if for all $x, y, z \in X$, the following statements hold true:

a) d(x, y) = 0 if and only if x = y

- b) d(x,y) = d(y,x),
- c) $d(x,y) \lesssim s [d(x,z) + d(z,y)].$

The pair (X, d) is called complex valued *b*-metric space.

Example 1.4. [15] Let X = [0, 1]. Define the mapping $d : X \times X \to \mathbb{C}$ by $d(x, y) = |x - y|^2 + i |x - y|^2,$

for all $x, y \in X$. Then (X, d) is a complex valued *b*-metric space with s = 2.

Definition 1.5. [15] Let (X, d) be a complex valued *b*-metric space.

i) A point $x \in X$ is called interior point of a set $A \subseteq X$ whenever there exists $0 < r \in \mathbb{C}$ such that $B(x, r) = \{y \in X : d(x, y) < r\} \subseteq A$.

ii) A point $x \in X$ is called a limit point of a set A whenever for every $0 < r \in \mathbb{C}$, $B(x,r) \cap (A - \{x\}) \neq \phi$.

iii) A subset $A \subseteq X$ is called an open set whenever each element of A is an interior point of a set A.

v) A sub-basis for Hausdorff topology τ on X is a family

$$F = \{ B(x, r) : x \in X \text{ and } 0 < r \}.$$

Definition 1.6. [15] Let (X, d) be a complex valued b-metric space, and let $\{x_n\}$ be a sequence in X and $x \in X$.

i) If for every $c \in C$, with 0 < c there is $N \in \mathbb{N}$ such that for all n > N, $d(x_n, x) < c$, then $\{x_n\}$ is said to be convergent and converges to x. We denote this by $\lim_{n \to +\infty} x_n = x$ or $\{x_n\} \to x$ as $n \to +\infty$.

ii) If for every $c \in C$, with 0 < c there is $N \in \mathbb{N}$ such that for all n > N, $d(x_n, x_{n+m}) < c$ where $m \in \mathbb{N}$, then $\{x_n\}$ is said to be Cauchy sequence.

iii) If every Cauchy sequence in X is convergent in X, then (X, d) is said to be complete complex valued b-metric space.

Lemma 1.1. [15] Let (X, d) be a complex valued b-metric space and let $\{x_n\}$ be a sequence in X. Then $\{x_n\}$ converges to x if and only if $|d(x_n, x)| \to 0$ as $n \to +\infty$.

Lemma 1.2. [15] Let (X, d) be a complex valued b-metric space, and let $\{x_n\}$ be a sequence in X. Then $\{x_n\}$ is Cauchy sequence if and only if $|d(x_n, x_{n+m})| \to 0$ as $n \to +\infty$, where $m \in \mathbb{N}$.

2. Main results

Now, we are ready to present our main results as follows

Theorem 2.1. Let (X, d) be a complete complex valued b-metric space with a coefficient $s \ge 1$, and $T: X \to X$ be a mappings on X satisfying the condition

$$d(Tx, Ty) \lesssim ad(x, y) + b \frac{d(x, Tx) d(x, Ty) + d(y, Ty) d(y, Tx)}{d(x, Ty) + d(y, Tx)},$$
(1)

for all, x, y in X and $a, b \ge 0$, $d(x, Sy) + d(y, Tx) \ne 0$ with s(a + b) < 1. Then T has a unique fixed point.

PROOF. Let $x_0 \in X$ be an arbitrary point in X. We define the sequence $\{x_n\}$ in X such that

$$x_{2n+1} = Tx_{2n}$$
, for all $n \in \mathbb{N}$

Now, we show that the sequence $\{x_n\}$ is Cauchy

$$\begin{aligned} d\left(x_{2n+1}, x_{2n+2}\right) &= d(Tx_{2n}, Tx_{2n+1}) \\ &\lesssim ad\left(x_{2n}, x_{2n+1}\right) + b \frac{d\left(x_{2n}, Tx_{2n}\right) d\left(x_{2n}, Tx_{2n+1}\right)}{d\left(x_{2n}, Tx_{2n+1}\right) + d\left(x_{2n+1}, Tx_{2n}\right)} \\ &+ b \frac{d\left(x_{2n+1}, Tx_{2n+1}\right) d\left(x_{2n+1}, Tx_{2n}\right)}{d\left(x_{2n}, Tx_{2n+1}\right) + d\left(x_{2n+1}, Tx_{2n}\right)} \\ &= ad\left(x_{2n}, x_{2n+1}\right) + b \frac{d\left(x_{2n}, x_{2n+1}\right) d\left(x_{2n}, x_{2n+2}\right)}{d\left(x_{2n}, x_{2n+2}\right) + d\left(x_{2n+1}, x_{2n+1}\right)} \\ &+ b \frac{d\left(x_{2n+1}, x_{2n+2}\right) d\left(x_{2n+1}, x_{2n+1}\right)}{d\left(x_{2n}, x_{2n+2}\right) + d\left(x_{2n+1}, x_{2n+1}\right)} \\ &= (a+b) d\left(x_{2n}, x_{2n+1}\right). \end{aligned}$$

Thus,

$$d(x_{2n+1}, x_{2n+2}) \lesssim (a+b) d(x_{2n}, x_{2n+1}).$$
(2)

By using lemma (1.2), implies that

$$\begin{aligned} |d(x_{2n+1}, x_{2n+2})| &\leq |(a+b) d(x_{2n}, x_{2n+1})| \\ &\leq (a+b) |d(x_{2n}, x_{2n+1})|. \end{aligned}$$

Since a + b < 1,

$$|d(x_{2n+1}, x_{2n+2})| \le (a+b) |d(x_{2n}, x_{2n+1})|.$$
(3)

Thus, for any $n \in \mathbb{N}$, we obtain

$$\begin{aligned} |d(x_{2n+1}, x_{2n+2})| &\leq (a+b) |d(x_{2n}, x_{2n+1})| \leq (a+b)^2 |d(x_{2n-1}, x_{2n-2})| & (4) \\ &\leq \dots \leq (a+b)^{2n+1} |d(x_1, x_0)|. \end{aligned}$$

Then, for any m > n

$$\begin{aligned} |d(x_n, x_m)| &\leq s |d(x_n, x_{n+1})| + s |d(x_{n+1}, x_m)| \\ &\leq s |d(x_n, x_{n+1})| + s^2 |d(x_{n+1}, x_{n+2})| + s^2 |d(x_{n+2}, x_m)| \\ &\leq s |d(x_n, x_{n+1})| + s^2 |d(x_{n+1}, x_{n+2})| + s^3 |d(x_{n+2}, x_{n+3})| \\ &+ s^3 |d(x_{n+3}, x_m)| \\ &\leq s |d(x_n, x_{n+1})| + s^2 |d(x_{n+1}, x_{n+2})| + s^3 |d(x_{n+2}, x_{n+3})| \\ &+ \dots + s^{m-n-1} |d(x_{m-2}, x_{m-1})| + s^{m-n} |d(x_{m-1}, x_m)|. \end{aligned}$$

By (4), we have

$$\begin{aligned} |d(x_n, x_m)| &\leq s(a+b)^n |d(x_0, x_1)| + s^2 (a+b)^{n+1} |d(x_0, x_1)| \\ &+ s^3 (a+b)^{n+2} |d(x_0, x_1)| + \dots + s^{m-n-1} (a+b)^{m-2} |d(x_0, x_1)| \\ &+ s^{m-n} (a+b)^{m-1} |d(x_0, x_1)| \\ &= \sum_{i=1}^{m-n} s^i (a+b)^{i+n-1} |d(x_0, x_1)|. \end{aligned}$$

Therefore,

$$\begin{aligned} |d(x_n, x_m)| &\leq \sum_{i=1}^{m-n} s^{i+n-1} (a+b)^{i+n-1} |d(x_0, x_1)| \\ &= \sum_{p=n}^{m-1} s^p (a+b)^p |d(x_0, x_1)| \\ &\leq \sum_{p=n}^{\infty} [s(a+b)]^p |d(x_0, x_1)| = \frac{[s(a+b)]^p}{1-s(a+b)} |d(x_0, x_1)|. \end{aligned}$$

From which we can deduce that

$$|d(x_n, x_m)| \le \frac{[s(a+b)]^p}{1-s(a+b)} |d(x_0, x_1)| \to 0 \text{ as } m, n \to +\infty$$

Thus $\{x_n\}$ is a Cauchy sequence in X. Since X is complete, there exists $u \in X$ such that $x_n \to u$ as $n \to +\infty$. Assume that, there exists $z \in X$ such that

$$|d(u, Tu)| = |z| > 0.$$
(5)

Using the triangular inequality and (1), we find

$$\begin{aligned} z &= d\left(u, Tu\right) \lesssim sd\left(u, x_{2n+2}\right) + s \left|d\left(x_{2n+2}, Tu\right)\right| \\ &= sd\left(u, x_{2n+2}\right) + sd\left(Tu, Sx_{2n+1}\right) \\ &\lesssim sd\left(u, x_{2n+2}\right) + sad\left(u, x_{2n+1}\right) \\ &+ sb\frac{d\left(u, Tu\right)d\left(u, Sx_{2n+1}\right) + d\left(x_{2n+1}, Sx_{2n+1}\right)d\left(x_{2n+1}, Tu\right)}{d\left(u, Sx_{2n+1}\right) + d\left(x_{2n+1}, Tu\right)} \\ &= sd\left(u, x_{2n+2}\right) + sad\left(u, x_{2n+1}\right) \\ &+ sb\frac{d\left(u, Tu\right)d\left(u, x_{2n+2}\right) + d\left(x_{2n+1}, x_{2n+2}\right)d\left(x_{2n+1}, Tu\right)}{d\left(u, x_{2n+2}\right) + d\left(x_{2n+1}, Tu\right)}, \end{aligned}$$

which implies that

$$|z| = |d(u, Tu)|$$

$$\leq s |d(u, x_{2n+2})| + sa |d(u, x_{2n+1})|$$

$$+ sb \frac{|d(u, Tu)| |d(u, x_{2n+2})| + |d(x_{2n+1}, x_{2n+2})| |d(x_{2n+1}, Tu)|}{|d(u, x_{2n+2}) + d(x_{2n+1}, Tu)|}.$$
(6)

Taking the limit of (6) as $n \to +\infty$, we get that $|z| = |d(u, Tu)| \le 0$, a contradiction with (5). So |z| = 0. Hence,

$$Tu = u.$$

To prove the uniqueness of common fixed point, assume that $v \in X$ be another fixed point of T that is

$$v = Tv$$

It follows that

$$\begin{aligned} d\left(u,v\right) &= d\left(Tu,Tv\right) \\ &\lesssim ad\left(u,v\right) + b \frac{d\left(u,Tu\right)d\left(u,Tv\right) + d\left(v,Tv\right)d\left(v,Tu\right)}{d\left(u,Tv\right) + d\left(v,Tu\right)} \\ &= ad\left(u,v\right). \end{aligned}$$

Since a < 1, we have d(u, v) = 0 Thus, T has a unique fixed point in X. \Box

Theorem 2.2. Let(X, d) be a complete complex valued b-metric space with $s \ge 1$, and $T, S : X \to X$ be two mappings on X satisfying the condition

$$d(Tx, Sy) \lesssim ad(x, y) + b \frac{d(x, Tx) d(x, Sy) + d(y, Sy) d(y, Tx)}{d(x, Sy) + d(y, Tx)},$$
(7)

for all, x, y in X and $a, b \ge 0$, $d(x, Sy) + d(y, Tx) \ne 0$ with s(a + b) < 1. Then T and S have a unique common fixed point.

PROOF. Let $x_0 \in X$ be an arbitrary point in X. We define the sequence $\{x_n\}$ in X such that

$$\begin{aligned} x_{2n+1} &= T x_{2n}, \\ x_{2n+2} &= S x_{2n+1}, \text{ for all } n \in \mathbb{N}. \end{aligned}$$

Putting n = 2k, with $x = x_{2k}$ and $y = x_{2k+1}$ we get

$$\begin{aligned} d\left(x_{2k+1}, x_{2k+2}\right) &= d(Tx_{2k}, Sx_{2k+1}) \\ &\lesssim ad\left(x_{2k}, x_{2k+1}\right) + b \frac{d\left(x_{2k}, Tx_{2k}\right) d\left(x_{2k}, Sx_{2k+1}\right)}{d\left(x_{2k}, Sx_{2k+1}\right) + d\left(x_{2k+1}, Tx_{2k}\right)} \\ &+ b \frac{d\left(x_{2k+1}, Sx_{2k+1}\right) d\left(x_{2k+1}, Tx_{2k}\right)}{d\left(x_{2k}, Sx_{2k+1}\right) + d\left(x_{2k+1}, Tx_{2k}\right)} \\ &= ad\left(x_{2k}, x_{2k+1}\right) + b \frac{d\left(x_{2k}, x_{2k+1}\right) d\left(x_{2k}, x_{2k+2}\right)}{d\left(x_{2k}, x_{2k+2}\right) + d\left(x_{2k+1}, x_{2k+1}\right)} \\ &+ b \frac{d\left(x_{2k+1}, x_{2k+2}\right) d\left(x_{2k+1}, x_{2k+1}\right)}{d\left(x_{2k}, x_{2k+2}\right) + d\left(x_{2k+1}, x_{2k+1}\right)} \\ &= (a+b) d\left(x_{2k}, x_{2k+1}\right). \end{aligned}$$

Thus,

$$d(x_{2k+1}, x_{2k+2}) \lesssim (a+b) d(x_{2k}, x_{2k+1}).$$
(8)

If $x_n = x_{n+1}$ for some n, with n = 2k then from (8), we have

$$d(x_{2k+1}, x_{2k+2}) = 0$$

which implies that $x_{2k+1} = x_{2k+2}$. For n = 2k + 1, by using the same arguments as in the case n = 2k, we get the same result. Continuing in this way we can show that $x_{2k-1} = x_{2k} = x_{2k+1} = \dots$ Then, $\{x_n\}$ is a Cauchy sequence. Now assume that $x_{2k} \neq x_{2k+1}$ for all $n \in \mathbb{N}$. First, we want to show that

$$d(x_n, x_{n+1}) \lesssim (a+b) d(x_{n-1}, x_n), \text{ for all } n \in \mathbb{N}$$
(9)

We consider two cases,

case 1. $n = 2k + 1, k \in \mathbb{N}$. From (8), we have

$$d(x_n, x_{n+1}) \lesssim (a+b) d(x_{n-1}, x_n), \ n = 2k+1, k \in \mathbb{N}$$
(10)

case 2. $n = 2k, k \in \mathbb{N}$. From (8), we have

$$d(x_{n+1}, x_{n+2}) \lesssim (a+b) d(x_n, x_{n+1})$$

$$\lesssim d(x_n, x_{n+1}) \lesssim (a+b) d(x_{n-1}, x_n), \ n = 2k, k \in \mathbb{N}.$$
(11)

So, from (10), (11), we conclude that

$$d(x_n, x_{n+1}) \lesssim (a+b) d(x_{n-1}, x_n)$$
, for all $n \in \mathbb{N}$.

Thus, we obtain that (9) holds. Now, we show that the sequence $\{x_n\}$ is a Cauchy sequence. By using lemma (1.2) and (8) we obtain

$$|d(x_n, x_{n+1})| \leq |(a+b) d(x_{n-1}, x_n)| \\\leq (a+b) |d(x_{n-1}, x_n)|.$$

Since a + b < 1,

$$|d(x_n, x_{n+1})| \le (a+b) |d(x_{n-1}, x_n)|.$$
(12)

Thus, for any m > n,

$$\begin{aligned} |d(x_n, x_m)| &\leq s |d(x_n, x_{n+1})| + s |d(x_{n+1}, x_m)| \\ &\leq s |d(x_n, x_{n+1})| + s^2 |d(x_{n+1}, x_{n+2})| + s^2 |d(x_{n+2}, x_m)| \\ &\leq s |d(x_n, x_{n+1})| + s^2 |d(x_{n+1}, x_{n+2})| + s^3 |d(x_{n+2}, x_{n+3})| \\ &+ s^3 |d(x_{n+3}, x_m)| \\ &\leq s |d(x_n, x_{n+1})| + s^2 |d(x_{n+1}, x_{n+2})| + s^3 |d(x_{n+2}, x_{n+3})| \\ &+ \dots + s^{m-n-1} |d(x_{m-2}, x_{m-1})| + s^{m-n} |d(x_{m-1}, x_m)|. \end{aligned}$$

By (12), we find

$$\begin{aligned} |d(x_n, x_m)| &\leq s(a+b)^n |d(x_0, x_1)| + s^2 (a+b)^{n+1} |d(x_0, x_1)| \\ &+ s^3 (a+b)^{n+2} |d(x_0, x_1)| + \dots + s^{m-n-1} (a+b)^{m-2} |d(x_0, x_1)| \\ &+ s^{m-n} (a+b)^{m-1} |d(x_0, x_1)| \\ &= \sum_{i=1}^{m-n} s^i (a+b)^{i+n-1} |d(x_0, x_1)| \,. \end{aligned}$$

Therefore,

$$\begin{aligned} |d(x_n, x_m)| &\leq \sum_{i=1}^{m-n} s^{i+n-1} (a+b)^{i+n-1} |d(x_0, x_1)| \\ &= \sum_{p=n}^{m-1} s^p (a+b)^p |d(x_0, x_1)| \\ &\leq \sum_{p=n}^{\infty} [s(a+b)]^p |d(x_0, x_1)| = \frac{[s(a+b)]^p}{1-s(a+b)} |d(x_0, x_1)|. \end{aligned}$$

So,

$$|d(x_n, x_m)| \le \frac{[s(a+b)]^p}{1-s(a+b)} |d(x_0, x_1)| \to 0 \text{ as } m, n \to +\infty$$

Thus, $\{x_n\}$ is a Cauchy sequence in X. Since X is complete, there exists $u \in X$ such that $x_n \to u$ as $n \to +\infty$. Then, there exists $z \in X$ such that

$$d(u, Tu)| = |z| > 0.$$
(13)

So, by using the triangular inequality and (7), we receive

$$\begin{aligned} z &= d\left(u, Tu\right) \lesssim sd\left(u, x_{2n+2}\right) + s \left|d\left(x_{2n+2}, Tu\right)\right| \\ &= sd\left(u, x_{2n+2}\right) + sd\left(Tu, Sx_{2n+1}\right) \\ &\lesssim sd\left(u, x_{2n+2}\right) + sad\left(u, x_{2n+1}\right) \\ &+ sb \frac{d\left(u, Tu\right)d\left(u, Sx_{2n+1}\right) + d\left(x_{2n+1}, Sx_{2n+1}\right)d\left(x_{2n+1}, Tu\right)}{d\left(u, Sx_{2n+1}\right) + d\left(x_{2n+1}, Tu\right)} \\ &= sd\left(u, x_{2n+2}\right) + sad\left(u, x_{2n+1}\right) \\ &+ sb \frac{d\left(u, Tu\right)d\left(u, x_{2n+2}\right) + d\left(x_{2n+1}, x_{2n+2}\right)d\left(x_{2n+1}, Tu\right)}{d\left(u, x_{2n+2}\right) + d\left(x_{2n+1}, Tu\right)}, \end{aligned}$$

which implies that

$$|z| = |d(u, Tu)|$$

$$\leq s |d(u, x_{2n+2})| + sa |d(u, x_{2n+1})|$$

$$+ sb \frac{|d(u, Tu)| |d(u, x_{2n+2})| + |d(x_{2n+1}, x_{2n+2})| |d(x_{2n+1}, Tu)|}{|d(u, x_{2n+2}) + d(x_{2n+1}, Tu)|}.$$
(14)

Taking the limit of (14) as $n \to +\infty$, we get that $|z| = |d(u, Tu)| \le 0$, a contradiction with (13). We conclude |z| = 0. Hence Tu = u, Similarly, one can also show that Su = u.

To achieve uniqueness of common fixed point, let $v \in X$ be another common fixed point of S and T that is

$$v = Tv = Sv.$$

Then,

$$d(u,v) = d(Tu, Sv)$$

$$\lesssim ad(u,v) + b \frac{d(u,Tu) d(u,Sv) + d(v,Sv) d(v,Tu)}{d(u,Sv) + d(v,Tu)}$$

$$= ad(u,v).$$

Since a < 1, we have

$$d\left(u,v\right) = 0.$$

We conclude that T and S have a unique common fixed point in X.

Theorem 2.3. Let(X, d) be a complete complex valued b-metric space with a coefficient $s \ge 1$, and $T, S : X \to X$ be two mappings on X satisfying the condition

$$d(Tx, Sy) \lesssim ad(x, y) + b \frac{d(y, Sy) \left[1 + d(x, Tx)\right]}{1 + d(x, y)} + c \frac{d(y, Sy) + d(y, Tx)}{1 + d(y, Sy) d(y, Tx)}, \quad (15)$$

for all, x, y in X and $a, b, c \ge 0$, and s(a + b + c) < 1. Then T and S have a unique common fixed point.

PROOF. Let $x_0 \in X$ be an arbitrary point in X. Define by induction a sequence $\{x_n\}$ in X such that

$$\begin{aligned} x_{2n+1} &= T x_{2n}, \\ x_{2n+2} &= S x_{2n+1}, \text{ for all } n \in \mathbb{N}. \end{aligned}$$

By putting n = 2k, with $x = x_{2k}$ and $y = x_{2k+1}$ we get

$$\begin{aligned} d\left(x_{2k+1}, x_{2k+2}\right) &= d(Tx_{2k}, Sx_{2k+1}) \\ &\lesssim ad\left(x_{2k}, x_{2k+1}\right) + b\frac{d\left(x_{2k+1}, Sx_{2k+1}\right)\left[1 + d\left(x_{2k}, Tx_{2k}\right)\right]}{1 + d\left(x_{2k}, x_{2k+1}\right)} \\ &+ c\frac{d\left(x_{2k+1}, Sx_{2k+1}\right) + d\left(x_{2k+1}, Tx_{2k}\right)}{1 + d\left(x_{2k+1}, Sx_{2k+1}\right) d\left(x_{2k+1}, Tx_{2k}\right)} \\ &= ad\left(x_{2k}, x_{2k+1}\right) + b\frac{d\left(x_{2k+1}, x_{2k+2}\right)\left[1 + d\left(x_{2k}, x_{2k+1}\right)\right]}{1 + d\left(x_{2k}, x_{2k+1}\right)} \\ &+ c\frac{d\left(x_{2k+1}, x_{2k+2}\right) + d\left(x_{2k+1}, x_{2k+2}\right)}{1 + d\left(x_{2k+1}, x_{2k+1}\right)} \\ &= ad\left(x_{2k}, x_{2k+1}\right) + bd\left(x_{2k+1}, x_{2k+2}\right) + cd\left(x_{2k+1}, x_{2k+2}\right). \end{aligned}$$

Thus,

$$d(x_{2k+1}, x_{2k+2}) \lesssim \frac{a}{1 - (b+c)} d(x_{2k}, x_{2k+1}).$$
(16)

If $x_n = x_{n+1}$ for some n, with n = 2k then from (16), we have $d(x_{2k+1}, x_{2k+2}) = 0$, so that $x_{2k+1} = x_{2k+2}$. For n = 2k + 1, by using the same arguments as in the case n = 2k,, we find the same result. Continuing in this way, we get $x_{2k-1} = x_{2k} = x_{2k+1} = \cdots$. We find that $\{x_n\}$ is a Cauchy sequence. Assume that $x_{2k} \neq x_{2k+1}$ for all $n \in \mathbb{N}$. First, we want to show that

$$d(x_n, x_{n+1}) \lesssim \frac{a}{1 - (b+c)} d(x_{n-1}, x_n), \text{ for all } n \in \mathbb{N}$$

$$(17)$$

There are two cases which we have to consider.

case 1. $n = 2k + 1, k \in \mathbb{N}$. From (16), we have

$$d(x_n, x_{n+1}) \lesssim \frac{a}{1 - (b+c)} d(x_{n-1}, x_n), \ n = 2k + 1, k \in \mathbb{N}.$$
 (18)

case 2. $n = 2k, k \in \mathbb{N}$. For (16), we get

$$d(x_{n+1}, x_{n+2}) \lesssim \frac{a}{1 - (b+c)} d(x_n, x_{n+1})$$

$$\lesssim d(x_n, x_{n+1}) \lesssim \frac{a}{1 - (b+c)} d(x_{n-1}, x_n), \ n = 2k, k \in \mathbb{N}.$$
(19)

So, from (18), (19) we conclude that

$$d(x_n, x_{n+1}) \lesssim \frac{a}{1 - (b+c)} d(x_{n-1}, x_n), \text{ for all } n \in \mathbb{N}.$$

Thus, we obtain that (17) holds. Now, we show that the sequence $\{x_n\}$ is a Cauchy sequence. Using lemma (1.2) and (17), we obtain

$$\begin{aligned} |d\left(x_{n}, x_{n+1}\right)| &\leq \left| \left(\frac{a}{1 - (b+c)} \right) d\left(x_{n-1}, x_{n}\right) \right| \\ &\leq \left(\frac{a}{1 - (b+c)} \right) |d\left(x_{n-1}, x_{n}\right)| \end{aligned}$$

Since a + b < 1,

$$|d(x_n, x_{n+1})| \le h |d(x_{n-1}, x_n)|.$$
(20)

where $h = \frac{a}{1-(b+c)} < \frac{1}{s} \le 1$, because s(a+b+c) < 1. Thus, for any $m > n, m, n \in \mathbb{N}$,

$$\begin{aligned} |d(x_n, x_m)| &\leq s |d(x_n, x_{n+1})| + s |d(x_{n+1}, x_m)| \\ &\leq s |d(x_n, x_{n+1})| + s^2 |d(x_{n+1}, x_{n+2})| + s^2 |d(x_{n+2}, x_m)| \\ &\leq s |d(x_n, x_{n+1})| + s^2 |d(x_{n+1}, x_{n+2})| + s^3 |d(x_{n+2}, x_{n+3})| \\ &+ s^3 |d(x_{n+3}, x_m)| \\ &\leq s |d(x_n, x_{n+1})| + s^2 |d(x_{n+1}, x_{n+2})| + s^3 |d(x_{n+2}, x_{n+3})| \\ &+ \dots + s^{m-n-1} |d(x_{m-2}, x_{m-1})| + s^{m-n} |d(x_{m-1}, x_m)|. \end{aligned}$$

By
$$(20)$$
, we get

$$|d(x_n, x_m)| \leq s(h)^n |d(x_0, x_1)| + s^2(h)^{n+1} |d(x_0, x_1)| + s^3(h)^{n+2} |d(x_0, x_1)| + \dots + s^{m-n-1}(h)^{m-2} |d(x_0, x_1)| + s^{m-n}(h)^{m-1} |d(x_0, x_1)| = \sum_{i=1}^{m-n} s^i(h)^{i+n-1} |d(x_0, x_1)|.$$

Then,

$$d(x_n, x_m)| \leq \sum_{i=1}^{m-n} s^{i+n-1} (h)^{i+n-1} |d(x_0, x_1)|$$

=
$$\sum_{p=n}^{m-1} s^p (h)^p |d(x_0, x_1)|$$

$$\leq \sum_{p=n}^{\infty} [s(h)]^p |d(x_0, x_1)| = \frac{[s(h)]^p}{1-s(h)} |d(x_0, x_1)|$$

So,

$$|d(x_n, x_m)| \le \frac{[s(h)]^p}{1 - s(h)} |d(x_0, x_1)| \to 0 \text{ as } m, n \to +\infty.$$

Thus, $\{x_n\}$ is a Cauchy sequence in X. Since X is complete, there exists $u \in X$ such that $x_n \to u$ as $n \to +\infty$.

By assumption, there exists $z \in X$ such that

$$|d(u, Tu)| = |z| > 0.$$
(21)

So, by using the triangular inequality and (15), we receive

$$\begin{aligned} z &= d\left(u, Tu\right) \lesssim sd\left(u, x_{2n+2}\right) + s \left|d\left(x_{2n+2}, Tu\right)\right| \\ &= sd\left(u, x_{2n+2}\right) + sd\left(Tu, Sx_{2n+1}\right) \\ &\lesssim sd\left(u, x_{2n+2}\right) + sad\left(u, x_{2n+1}\right) \\ &+ sb\frac{d\left(x_{2n+1}, Sx_{2n+1}\right)\left[1 + d\left(u, Tu\right)\right]}{1 + d\left(u, x_{2n+1}\right)} + sc\frac{d\left(x_{2n+1}, Sx_{2n+1}\right) + d\left(x_{2n+1}, Tu\right)}{1 + d\left(x_{2n+1}, Tu\right)} \end{aligned}$$

which implies that

$$\begin{aligned} |z| &= |d(u, Tu)| \\ &\leq s |d(u, x_{2n+2})| + sa |d(u, x_{2n+1})| \\ &+ sb \frac{|d(x_{2n+1}, Sx_{2n+1})| |1 + d(u, Tu)|}{|1 + d(u, x_{2n+1})|} + sc \frac{|d(x_{2n+1}, Sx_{2n+1})| + |d(x_{2n+1}, Tu)|}{|1 + d(x_{2n+1}, Sx_{2n+1})| d(x_{2n+1}, Tu)|} \end{aligned}$$

Taking the limit of (22) as $n \to +\infty$, we get that $|z| = |d(u, Tu)| \le sc|d(u, Tu)|$, a contradiction since sc < 1. It follows |z| = 0. Hence Tu = u.

On similar steps, we get

$$|d(u, Su)| \le s (b+c) |d(u, Su)|.$$

Since s(b+c) < 1, |d(u, Su)| = 0 thus Su = u. To prove the uniqueness of fixed point, let $v \in X$ be another common fixed point of S and T, it becomes

$$v = Tv = Sv$$

Then

$$\begin{aligned} d\,(u,v) &= d\,(Tu,Sv) \\ &\lesssim ad\,(u,v) + b \frac{d\,(v,Sv)\,[1+d\,(u,Tu)]}{1+d\,(u,v)} + c \frac{d\,(v,Sv) + d\,(v,Tu)}{1+d\,(v,Sv)\,d\,(v,Tu)}, \\ &= (a+c)\,d\,(u,v)\,. \end{aligned}$$

Since 0 < a + c < 1, we have d(u, v) = 0. Thus, the maps T and S have a unique common fixed point in X. This completes the proof.

The following example illustrates the result of 2.1.

Example 2.1. Let
$$X = [0, 1]$$
. Define the mapping $d : X \times X \to \mathbb{C}$ by $d(x, y) = 3\{|x - y|^3 + i |x - y|^3\},$

for all $x, y \in X$. Then (X, d) is a complex valued b-metric space with s = 4 To verify that (X, d) is a complete complex valued b-metric space with s = 4, it is enough to verify the triangular inequality condition:

$$\begin{aligned} \frac{1}{3}d\left(x,y\right) &= |x-y|^{3} + i |x-y|^{3} \\ &= |x-y+z-z|^{3} + i |x-y+z-z|^{3} \\ &\preccurlyeq 2^{2} \left(|x-z|^{3} + |z-y|^{3}\right) + i2^{2} \left(|x-z|^{3} + |z-y|^{3}\right) \\ &\preccurlyeq 4 \left[\left(|x-z|^{3} + i |x-z|^{3}\right) + \left(|z-y|^{3} + i |z-y|^{3}\right) \right] \\ &= 4 \left[d \left(x,z\right) + d \left(z,y\right) \right]. \end{aligned}$$

Therefore s = 4. Now, define $T : X \to X$ as $Tx = \frac{x}{4}, Ty = \frac{y}{4}$, for all $x, y \in X$. Then

$$d(Tx, Ty) = d\left(\frac{x}{4}, \frac{y}{4}\right)$$

$$\frac{1}{3}d(Tx, Ty) = \left\{ \left|\frac{x}{4} - \frac{y}{4}\right|^3 + i\left|\frac{x}{4} - \frac{y}{4}\right|^3 \right\}$$

$$= \frac{1}{4} \left\{ |x - y|^3 + i|x - y|^3 \right\}$$

$$d(Tx, Ty) = \frac{3}{4}d(x, y),$$

Under the condition (1), we have

$$d(Tx,Ty) \lesssim \frac{1}{3}d\left(\frac{x}{4},\frac{y}{4}\right) + \frac{1}{4}\frac{d\left(x,\frac{x}{4}\right)d\left(x,\frac{y}{4}\right) + d\left(y,\frac{y}{4}\right)d\left(y,\frac{x}{4}\right)}{d\left(x,\frac{y}{4}\right) + d\left(y,\frac{x}{4}\right)}$$

Then

$$s(a+b) = 4\left(\frac{1}{4},\frac{1}{3}\right) = \frac{1}{3} < 1.$$

Thus, all the conditions of Theorem 2.1 are satisfied with the coefficients $s = 4, a = \frac{1}{3}$ and $b = \frac{1}{4}$. Observe that the point $0 \in X$, remains fixed under T and is indeed unique.

References

- A. Azam, B. Fisher and M. Khan, Common fixed point theorems in complex valued metric spaces, Numer. Funct. Anal. Optim., 32(2011), 243-253.
- [2] S. Bhatt, S. Chaukiyal, R. C. Dimri, A common fixed point theorem for weakly compatible maps in complex valued metric spaces, Int. J. Math. Sci. Appl., 1(2011), 1385-1389.
- [3] A. K. Dubey, R. Shukla and R. Prakash Dubey, Some common fixed point theorems for contractive mappings in complex valued b-metric spaces, Asian J. Math. Appl., 2015(2015), Article ID ama0266, 13 Pages.
- [4] O. Ege, Complex valued rectangular b-metric spaces and an application to linear equations, J. Nonlinear Sci. Appl., 8(2015), 1014-1021.
- [5] A. Jamshaid, K. Chakkrid and A. Azam, Common fixed points for multivalued mappings in complex valued metric spaces with applications, Abstr. Appl. Anal., 2013(2013), ID 854965.
- [6] T. Hamaizia and A. Aliouche, A nonunique common fixed point theorem of Rhoades type in b-metric spaces with applications, Int. J. Nonlinear Anal. Appl. 12(2021), 399-413.
- [7] S. M. Kang, M. Kumar, P. Kumar and S. Kumar, Coupled fixed point theorems in complex valued metric spaces, Int. J. Math. Anal., 7(2013), 2269-2277.
- [8] M. A. Kutbi, A. Azam, A. Jamshaid and C. Bari, Some coupled fixed points results for generalized contraction in complex valued metric spaces, J. Appl. Math., 2013 (2013). ID 352927, 10 pages.
- [9] D. Hasanah, Fixed point theorems in complex valued B-metric spaces, Cauchy-J. Mat. Murini Apl., 4(2017), 138-145
- [10] S. Manro, Some common fixed point theorems in complex valued metric space using implicit function, Int. J. Anal. Appl., 2(2013), 62-70.
- [11] S. Merdaci, T. Hamaizia, Some fixed point theorems of rational type contraction in b-metric spaces, Moroccan J. Pure Appl. Anal., 7(2021), 350-363.
- [12] S. Merdaci, T. Hamaizia and A. Aliouche, Some generalization of non-unique fixed point theorems for multi-valued mappings in b-metric spaces, U.P.B. Sci. Bull., Series A, 83(2021), 55-62.
- [13] S. K. Mohanta and R. Maitra, Common fixed point of three self mappings in complex valued metric spaces, Int. J. Math. Arch., 3(2012), 2946-2953.
- [14] A. A. Mukheimer, Some common fixed point theorems in complex valued b-metric spaces, Sci. World J., 2014(2014), Article ID 587825, 6 pages.
- [15] K. P. Rao, P. R. Swamy and J. R. Prasad, A common fixed point theorem in complex valued b-metric spaces, Bull. Math. Statist. Res., 1(2013), 1-8.

- [16] F. Rouzkard and M. Imdad, Some common fixed point theorems on complex valued metric spaces, Comput. Math. Appl., 64(2012), 1866-1874.
- [17] W. Sintunavarat and P. Kumam, Generalized common fixed point theorems in complex valued metric spaces and applications, J. Inequal. Appl., 2012(2012), https://doi.org/10.1186/1029-242X-2012-84
- [18] K. Sitthikul and S. Saejung, Some fixed point theorems in complex valued metric space, Fixed Point Theory Appl., 2012(2012), https://doi.org/10.1186/1687-1812-2012-189.
- [19] R. K. Verma and H. K. Pathak, Common fixed point theorems for a pair of mappings in complex valued metric spaces, J. Math. Computer Sci., 6(2013), 18-26.

LABORATORY OF MATHEMATICS, INFORMATICS AND SYSTEMS (LAMIS), LARBI TEBESSI UNIVERSITY, TEBESSA, ALGERIA

Email address: s.merad@univ-tebessa.dz

System Dynamics and Control Laboratory, Department of Mathematics and Informatics, Oum El Bouaghi University, Algeria *Email address*: tayeb042000@yahoo.fr,

> Received : November 2022 Accepted : December 2022