
Mathematical Analysis and its Contemporary Applications

Volume 5, Issue 1, 2023, 33–49

doi: 10.30495/maca.2022.1964436.1061

ISSN 2716-9898

T -norms over complex fuzzy subgroups

Rasul Rasuli

Abstract. In this paper, by using t-norms, we define complex fuzzy subgroups

and normal complex fuzzy subgroups and investigate some of characteristics of

them. Later we introduce and study the intersection and composition of them.

Next, we define the concept of normality between two complex fuzzy subgroups

under t-norms and obtain some properties of them. Finally, we define the image

and the inverse image of them under group homomorphisms.

1. Introduction

Zadeh [38] proposed the fuzzy sets. The idea of fuzzy sets is based on real

number system. Buckley [4, 5] introduced the idea of fuzzy complex sets. In

Buckley’s definition, the representation of fuzzy complex number in the polar form

is quite unstable. Ramot et al. [11, 12] proposed a new concept of defining a fuzzy

complex set. Group theory has applications in physics, chemistry, and computer

science, and even puzzles like Rubik’s Cube can be represented using group theory.

Rosenfeld [36] introduced fuzzy sets in the realm of group theory and formulated the

concepts of fuzzy subgroups of a group. Many authors have worked on fuzzy group

theory [9, 10, 37]. Especially, some authors considered the fuzzy subgroups with

respect to a t-norm and gave some results [1, 3, 37]. Alsarahead and Ahmad [2]

defined the complex fuzzy subgroup and investigate some of its characteristics. The

author by using norms, investigated some properties of fuzzy algebraic structures

[13]-[35].

In this paper, by using t-norms, we investigate complex fuzzy subgroups of group

G. In Section 2, we recall some basic definitions and preliminary results which will
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be needed in the sequel. In Section 3, we define complex fuzzy subgroups of G

under t-norm T as CFST (G) and investigate some properties of them. Later, we

define the composition of two µ1, µ2 ∈ CFST (G) and obtain some of their char-

acteristics. Also we introduce the intersection of two µ1, µ2 ∈ CFST (G) and we

prove that µ1 ∩ µ2 ∈ CFST (G). Next, we define the normality of µ ∈ CFST (G) as

NCFST (G) and we show that if µ1, µ2 ∈ NCFST (G), then µ1∩µ2 ∈ NCFST (G).

Finally, we introduce the normality between two µ1, µ2 ∈ CFST (G) and inves-

tigate some important properties of them. In Section 4, we investigate obtained

conceptions by group homomorphism f : G → H. For this if µ ∈ CFST (G) and

ν ∈ CFST (H), then we prove that f(µ) ∈ CFST (H) and f−1(ν) ∈ CFST (G). Also

if µ ∈ NCFST (G) and ν ∈ NCFST (H), then we prove that f(µ) ∈ NCFST (H)

and f−1(ν) ∈ NCFST (G). Finally, if µ1, µ2 ∈ CFST (G) such that µ1 ≼ µ2, then

we show that f(µ1) ≼ f(µ2) and if µ1, µ2 ∈ CFST (H) such that µ1 ≼ µ2, then we

obtain that f−1(µ1) ≼ f−1(µ2).

2. Preliminaries

Definition 2.1. [7] A group is a nonempty set G on which there is a binary

operation (a, b) → ab such that

(1) if a and b belong to G then ab is also in G (closure),

(2) a(bc) = (ab)c for all a, b, c ∈ G (associativity),

(3) there is an element eG ∈ G such that aeG = eGa = a for all a ∈ G (identity),

(4) if a ∈ G, then there is an element a−1 ∈ G such that aa−1 = a−1a = eG (inverse).

One can easily check that this implies the unicity of the identity and of the

inverse. A group G is called abelian if the binary operation is commutative, i.e.,

ab = ba for all a, b ∈ G.

Remark 2.2. There are two standard notations for the binary group operation:

either the additive notation, that is (a, b) → a + b in which case the identity is

denoted by 0, or the multiplicative notation, that is (a, b) → ab for which the

identity is denoted by e.

Definition 2.3. [8] Let G be an arbitrary group with a multiplicative binary

operation and identity e. As fuzzy subset of G, we mean a function from G into

[0, 1]. The set of all fuzzy subsets of G is called the [0, 1]-power set of G and is

denoted [0, 1]G.

Definition 2.4. [11] Let X be a nonempty set. A complex fuzzy set A on

X is an object having the form A = {(x, µA(x))|x ∈ X}, where µA denotes the

degree of membership function that assigns each element x ∈ X a complex number

µA(x) lies within the unit circle in the complex plane. We shall assume that is

µA(x) will be represented by rA(x)e
iwA(x) where i =

√
−1, and r : X → [0, 1] and
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w : X → [0, 2π]. Note that by setting w(x) = 0 in the definition above, we return

back to the traditional fuzzy subset. Let µ1 = r1e
w1 , and µ2 = r2e

w2 be two complex

numbers lie within the unit circle in the complex plane. By µ1 ≤ µ2, we mean r1 ≤ r2
and w1 ≤ w2.

Definition 2.5. [6] A t-norm T is a function T : [0, 1] × [0, 1] → [0, 1] having

the following four properties:

(T1) T (x, 1) = x (neutral element),

(T2) T (x, y) ≤ T (x, z) if y ≤ z (monotonicity),

(T3) T (x, y) = T (y, x) (commutativity),

(T4) T (x, T (y, z)) = T (T (x, y), z) (associativity),

for all x, y, z ∈ [0, 1].

We say that T is idempotent if for all x ∈ [0, 1] we have T (x, x) = x.

Example 2.6. The basic t-norms are Tm(x, y) = min{x, y} and Tb(x, y) =

max{0, x+y−1} and Tp(x, y) = xy, which are called standard intersection, bounded

sum and algebraic product respectively.

Lemma 2.1. [1] Let T be a t-norm. Then

T (T (x, y), T (w, z)) = T (T (x,w), T (y, z)),

for all x, y, w, z ∈ [0, 1].

3. T -norms over complex fuzzy subgroups

Definition 3.1. Let G be a group and µ : G → [0, 1] be a complex fuzzy set on

G. Then µ = reiw is said to be a complex fuzzy subgroup of G under t-norm T as

CFST (G) if the following conditions hold:

(1) r(xy) ≥ T (r(x), r(y)),

(2) r(x−1) ≥ r(x),

(3) w(xy) ≥ min{w(x), w(y)},
(4) w(x−1) ≥ w(x),

for all x, y ∈ G.

Example 3.2. Let G = {0, a, b, c} be the Klein’s group. Every element is its own

inverse, and the product of any two distinct non-identity elements is the remaining

non-identity element. Thus the Klein 4-group admits the elegant presentation a2 =

b2 = c2 = abc = 0.

Define r : G → [0, 1] by

r(x) =


0.5 if x = a

0.6 if x = b

0.7 if x = c

0.8 if x = 0
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and w : G → [0, 2π] by

w(x) =


0.4π if x = a

0.4π if x = b

0.5π if x = c

0.6π if x = 0.

Let T (a, b) = Tp(a, b) = ab for all a, b ∈ [0, 1], then µ(x) = r(x)eiw(x) ∈
CFST (G) for all x ∈ G.

Proposition 3.1. Let µ = reiw ∈ CFST (G) such that T = min be idempotent

t-norm. Then

(1) µ(e) ≥ µ(x) for all x ∈ G,

(2) µ(xn) ≥ µ(x) for all x ∈ G and n ≥ 1,

(3) µ(x) = µ(x−1) for all x ∈ G.

Proof. Let µ = reiw ∈ CFST (G) and x ∈ G and n ≥ 1 Then

(1)

r(e) = r(xx−1) ≥ T (r(x), r(x−1)) ≥ T (r(x), r(x)) = r(x)

and

w(e) = w(xx−1) ≥ min{w(x), w(x−1)} ≥ min{w(x), w(x)} = w(x),

which mean that

µ(e) = r(e)eiw(e) ≥ r(x)eiw(x) = µ(x).

(2)

r(xn) = r(xx...x︸ ︷︷ ︸
n

) ≥ T (r(x), r(x), ..., r(x)︸ ︷︷ ︸
n

) = r(x)

and

w(xn) = w(xx...x︸ ︷︷ ︸
n

) ≥ min{w(x), w(x), ..., w(x)︸ ︷︷ ︸
n

} = w(x),

which yield

µ(xn) = r(xn)eiw(xn) ≥ r(x)eiw(x) = µ(x).

(3) r(x) = r((x−1))−1 ≥ r(x−1) ≥ r(x) and so r(x) = r(x−1). Also w(x) =

w((x−1))−1 ≥ w(x−1) ≥ w(x) and then w(x) = w(x−1). Thus µ(x) = r(x)eiw(x) =

r(x−1)eiw(x−1) = µ(x−1). □

Proposition 3.2. Let µ = reiw ∈ CFST (G) and x ∈ G such that T be idempo-

tent t-norm. Then µ(xy) = µ(y) for every y ∈ G if and only if µ(x) = µ(e).

Proof. If µ(xy) = µ(y), for all y ∈ G, then as y = e so µ(x) = µ(e). Conversely,

let µ(x) = µ(e), then r(x) = r(e) and w(x) = w(e) and from Proposition 3.1(part
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1) we get that r(x) ≥ r(y) and r(x) ≥ r(xy) also w(x) ≥ w(y) and w(x) ≥ w(xy).

Now

r(xy) ≥ T (r(x), r(y)) ≥ T (r(y), r(y)) = r(y) = r(x−1xy) ≥ T (x−1, r(xy))

≥ T (r(x), r(xy)) ≥ T (r(xy), r(xy)) = r(xy),

and then r(xy) = r(y). Also

w(xy) ≥ min{w(x), w(y)} ≥ min{w(y), w(y)} = w(y) = w(x−1xy)

≥ min{w(x), w(xy)} ≥ min{w(xy), w(xy)} = w(xy),

thus w(xy) = w(y). Therefore

µ(xy) = r(xy)eiw(xy) = r(y)eiw(y) = µ(y).

□

Definition 3.3. Let G be a set and let µ1 = r1e
iw1 and µ2 = r2e

iw2 be two

complex fuzzy sets on G. Denote the composition of µ1 and µ2 as µ1 ◦ µ2 = (r1 ◦
r2)e

i(w1◦w2) such that r1 ◦ r2 : G → [0, 1] and w1 ◦ w2 : G → [0, 2π] and define by

(µ1 ◦ µ2)(x) = (r1 ◦ r2)(x)ei(w1◦w2)(x)(x) such that

(r1 ◦ r2)(x) =
{

supx=ab T (r1(a), r2(b)) if x = ab

0 if x ̸= ab

and

(w1 ◦ w2)(x) =

{
minx=ab{w1(a), w2(b)} if x = ab

0 if x ̸= ab,

We can say that

(µ1 ◦ µ2)(x) = sup
x=ab

T (r1(a), r2(b))e.
iminx=ab{w1(a), w2(b)}.

Proposition 3.3. Let µ−1 be the inverse of µ such that µ−1(x) = µ(x−1). Then

µ ∈ CFST (G) if and only if µ satisfies the following conditions:

(1) µ ≥ µ ◦ µ;
(2) µ−1 = µ.

Proof. Let x, y, z ∈ G with x = yz and µ ∈ CFST (G). Then

r(x) = r(yz) ≥ T (r(y), r(z)) = (r ◦ r)(x)

and

w(x) = w(yz) ≥ min{w(y), w(z)} = (w ◦ w)(x),
then

µ(x) = r(x)eiw(x) ≥ (r ◦ r)(x)ei(w◦w)(x) = (µ ◦ µ)(x)
so µ ≥ µ ◦ µ. Also as Proposition 3.1 (part3), for all x ∈ G we have µ−1(x) =

µ(x−1) = µ(x) and so µ−1 = µ.
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Conversely let µ ≥ µ◦µ and µ−1 = µ.We prove that µ ∈ CFST (G). As µ ≥ µ◦µ
so r(x) ≥ (r ◦ r)(x) and w(x) ≥ (w ◦ w)(x) and thus

r(yz) = r(x) ≥ (r ◦ r)(x) = sup
x=yz

T (r(y), r(z)) ≥ T (r(y), r(z))

and

w(yz) = w(x) ≥ (w ◦ w)(x) = min
x=yz

{w(y), w(z)} ≥ {w(y), w(z)}.

Since µ−1 = µ so r−1(x) = r(x) and w−1(x) = w(x), r(x−1) = r−1(x) = r(x) and

w(x−1) = w−1(x) = w(x). Then µ ∈ CFST (G). □

Corollary 3.4. Let µ1, µ2 ∈ CFST (G) and G be commutative group. Then

µ1 ◦ µ2 ∈ CFST (G) if and only if µ1 ◦ µ2 = µ2 ◦ µ1.

Proof. As µ1, µ2 ∈ CFST (G) and µ1 ◦ µ2 ∈ CFST (G) then from Proposition

3.3 we get that µ−1
1 = µ1 and µ−1

2 = µ2 and (µ2 ◦ µ1)
−1 = µ2 ◦ µ1. Then

µ1 ◦ µ2 = µ−1
1 ◦ µ−1

2 = (µ2 ◦ µ1)
−1 = µ2 ◦ µ1.

Conversely, let µ1 ◦ µ2 = µ2 ◦ µ1 then

(µ1◦µ2)◦(µ1◦µ2) = µ1◦(µ2◦µ1)◦µ2 = µ1◦(µ1◦µ2)◦µ2 = (µ1◦µ1)◦(µ2◦µ2) ≤ µ1◦µ2.

Also

(µ1 ◦ µ2)
−1 = (µ2 ◦ µ1)

−1 = µ−1
1 ◦ µ−1

2 = µ1 ◦ µ2.

Thus Proposition 3.3 gives us that µ1 ◦ µ2 ∈ CFST (G). □

Definition 3.4. Let µ1 = r1e
iw1 ∈ CFST (G) and µ2 = r2e

iw2 ∈ CFST (G).

Define the intersection µ1 ∩ µ2 as

µ1 ∩ µ2 = r1e
iw1 ∩ r2e

iw2 = (r1 ∩ r2)e
i(w1∩w2)

such that r1 ∩ r2 : G → [0, 1] and w1 ∩ w2 : G → [0, 2π] and for all x ∈ G define

(r1 ∩ r2)(x) = T (r1(x), r2(x))

and

(w1 ∩ w2)(x) = min{w1(x), w2(x)}.

Proposition 3.5. Let µ1 = r1e
iw1 ∈ CFST (G) and µ2 = r2e

iw2 ∈ CFST (G).

Then µ1 ∩ µ2 ∈ CFST (G).

Proof. (1) Let g1, g2 ∈ G. Then

(r1 ∩ r2)(g1g2) = T (r1(g1g2), r2(g1g2))

≥ T (T (r1(g1), r1(g2)), T (r2(g1), r2(g2)))

= T (T (r1(g1), r2(g1)), T (r1(g2), r2(g2))) (Lemma 2.1)

= T ((r1 ∩ r2)(g1), (r1 ∩ r2)(g2))
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and thus

(r1 ∩ r2)(g1g2) ≥ T ((r1 ∩ r2)(g1), (r1 ∩ r2)(g2)).

(2) If g ∈ G, then

(r1 ∩ r2)(g
−1) = T (r1(g

−1), r2(g
−1)) ≥ T (r1(g), r2(g)) = (r1 ∩ r2)(g)

and so

(r1 ∩ r2)(g
−1) ≥ (r1 ∩ r2)(g).

(3) Let g1, g2 ∈ G. Then

(w1 ∩ w2)(g1g2) = min{w1(g1g2), w2(g1g2)}
≥ min{min{w1(g1), w1(g2)},min{w2(g1), w2(g2)}}
= min{min{w1(g1), w2(g1)},min{w1(g2), w2(g2))}}
= min{(w1 ∩ w2)(g1), (w1 ∩ w2)(g2))}

and so

(w1 ∩ w2)(g1g2) ≥ min{(w1 ∩ w2)(g1), (w1 ∩ w2)(g2))}.

(4) Let g ∈ G so

(w1 ∩ w2)(g
−1) = min{w1(g

−1), w2(g
−1)} ≥ min{w1(g), w2(g)} = (w1 ∩ w2)(g)

and then

(w1 ∩ w2)(g
−1) ≥ (w1 ∩ w2)(g).

Thus from (1)-(4) we give that µ1 ∩ µ2 ∈ CFST (G). □

Corollary 3.6. Let In = {1, 2, ..., n}. If {µi | i ∈ In} ⊆ CFST (G) then

µ = ∩i∈Inµi ∈ CFST (G).

Definition 3.5. µ ∈ CFST (G) is called normal as NCFST (G), if for all x, y ∈
G we have µ(xyx−1) = µ(y).

Proposition 3.7. Let µ1 = r1e
iw1 ∈ NCFST (G) and µ2 = r2e

iw2 ∈ NCFST (G).

Then µ1 ∩ µ2 ∈ NCFST (G).

Proof. By Proposition 3.5 we will have that µ1∩µ2 ∈ CFST (G). Let g1, g2 ∈ G

then

(r1 ∩ r2)(g1g2g
−1
1 ) = T (r1(g1g2g

−1
1 ), r2(g1g2g

−1
1 )) = T (r1(g2), r2(g2)) = (r1 ∩ r2)(g2)

and

(w1 ∩ w2)(g1g2g
−1
1 ) =min{w1(g1g2g

−1
1 ), w2(g1g2g

−1
1 )}

=min{w1(g2), w2(g2)} = (w1 ∩ w2)(g2)
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and thus

(µ1 ∩ µ2)(g1g2g
−1
1 ) =(r1 ∩ r2)(g1g2g

−1
1 )ei(w1∩w2)(g1g2g

−1
1 )

=(r1 ∩ r2)(g2)e
i(w1∩w2)(g2) = (µ1 ∩ µ2)(g2)

and therefore µ1 ∩ µ2 ∈ NCFST (G). □

Corollary 3.8. Let In = {1, 2, ..., n}. If {µi | i ∈ In} ⊆ NCFST (G), Then

µ = ∩i∈Inµi ∈ NCFST (G).

Definition 3.6. Let µ1 = r1e
iw1 ∈ CFST (G) and µ2 = r2e

iw2 ∈ CFST (G) such

that µ1 ⊆ µ2. We say that µ1 is normal of the µ2, written µ1 ≼ µ2, if

r1(g1g2g
−1
1 ) ≥ T (r1(g2), r2(g1)) and w1(g1g2g

−1
1 ) ≥ min{w1(g2), w2(g1)}

for all g1, g2 ∈ G.

Proposition 3.9. If T be idempotent, then every µ = reiw ∈ CFST (G) will be

normal of itself.

Proof. Let g1, g2 ∈ G and µ = reiw ∈ CFST (G). Then

r(g1g2g
−1
1 ) ≥ T (r(g1), r(g2g

−1
1 ))

≥ T (r(g1), T (r(g2), r(g
−1
1 )))

≥ T (r(g1), T (r(g2), r(g1)))

= T (r(g2), T (r(g1), r(g1)))

= T (r(g2), r(g1))

and so

r(g1g2g
−1
1 ) ≥ T (r(g2), r(g1)).

Also

w(g1g2g
−1
1 ) ≥ min{w(g1), w(g2g−1

1 ))}
≥ min{w(g1),min{w(g2), w(g−1

1 )}}
≥ min{w(g1),min{w(g2), w(g1)))
= min{w(g2),min{w(g1), w(g1)}}
= min{w(g2), w(g1)}

and then

w(g1g2g
−1
1 ) ≥ min{w(g2), w(g1)}.

Therefore µ = reiw ≼ µ = reiw. □

Proposition 3.10. Let µ1 = r1e
iw1 ∈ NCFST (G) and µ2 = r2e

iw2 ∈ CFST (G)

such that T be idempotent. Then µ1 ∩ µ2 ≼ µ2.
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Proof. By Proposition 3.5 (µ1 ∩ µ2) ≤ µ2 and (µ1 ∩ µ2) ∈ CFST (G). Let

g1, g2 ∈ G and µ1 ∩ µ2 = (r1 ∩ r2)e
i(w1∩w2). Then

(r1 ∩ r2)(g1g2g
−1
1 ) = T (r1(g1g2g

−1
1 ), r2(g1g2g

−1
1 ))

= T (r1(g2), r2(g1g2g
−1
1 ))

≥ T (r1(g2), T (r2(g1g2), r2(g
−1
1 )))

≥ T (r1(g2), T (r2(g1g2), r2(g1)))

≥ T (r1(g2), T (T (r2(g1), r2(g2)), r2(g1)))

= T (r1(g2), T (T (r2(g1), r2(g1)), r2(g2)))

= T (r1(g2), T (r2(g1), r2(g2)))

= T (T (r1(g2), r2(g2)), r2(g1))

= T ((r1 ∩ r2)(g2), r2(g1))

and thus

(r1 ∩ r2)(g1g2g
−1
1 ) ≥ T ((r1 ∩ r2)(g2), r2(g1)).

Also

(w1 ∩ w2)(g1g2g
−1
1 ) = min{w1(g1g2g

−1
1 ), w2(g1g2g

−1
1 )}

= min{w1(g2), w2(g1g2g
−1
1 )}

≥ min{w1(g2),min{w2(g1g2), w2(g
−1
1 )}}

≥ min{w1(g2),min{w2(g1g2), w2(g1)}}
≥ min{w1(g2),min{min{w2(g1), w2(g2)}, w2(g1)}}
= min{w1(g2),min{min{w2(g1), w2(g1))}, w2(g2)}}
= min{w1(g2),min{w2(g1), w2(g2)}}
= min{min{w1(g2), w2(g2)}, w2(g1)}
= min{(w1 ∩ w2)(g2), w2(g1)}

and then

(w1 ∩ w2)(g1g2g
−1
1 ) ≥ min{(w1 ∩ w2)(g2), w2(g1)}.

Therefore µ1 ∩ µ2 = (r1 ∩ r2)e
i(w1∩w2) ≼ µ2. □

Proposition 3.11. Let µ1 = r1e
iw1 ∈ CFST (G) and µ2 = r2e

iw2 ∈ CFST (G)

and µ3 = r3e
iw3 ∈ CFST (G) and T be idempotent t-norm. If µ1 ≼ µ3 and µ2 ≼ µ3,

then µ1 ∩ µ2 ≼ µ3.

Proof. As Proposition 3.5 we will have that µ1 ∩ µ2 ∈ CFST (G) and µ1 ∩
µ2 ≤ µ3. Let g1, g2 ∈ G. As µ1 ≼ µ3 so r1(g1g2g

−1
1 ) ≥ T (r1(g2), r3(g1)) and
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w1(g1g2g
−1
1 ) ≥ min{w1(g2), w3(g1)} and as µ2 ≼ µ3 so r2(g1g2g

−1
1 ) ≥ T (r2(g2), r3(g1))

and w2(g1g2g
−1
1 ) ≥ min{w2(g2), w3(g1)}. Now

(r1 ∩ r2)(g1g2g
−1
1 ) = T (r1(g1g2g

−1
1 ), r2(g1g2g

−1
1 ))

≥ T (T (r1(g2), r3(g1)), T (r2(g2), r3(g1)))

= T (T (r1(g2), r2(g2)), T (r3(g1), r3(g1))) (Lemma 2.1)

= T (T (r1(g2), r2(g2)), r3(g1))

= T ((r1 ∩ r2)(g2), r3(g1))

and then

(r1 ∩ r2)(g1g2g
−1
1 ) ≥ T ((r1 ∩ r2)(g2), r3(g1)).

Also

(w1 ∩ w2)(g1g2g
−1
1 ) = min{w1(g1g2g

−1
1 ), w2(g1g2g

−1
1 )}

≥ min{min{w1(g2), w3(g1)},min{w2(g2), w3(g1)}}
= min{min{w1(g2), w2(g2)},min{w3(g1), w3(g1)}}
= min{min{w1(g2), w2(g2)}, w3(g1)}
= min{(w1 ∩ w2)(g2), w3(g1)}

and so

(w1 ∩ w2)(g1g2g
−1
1 ) ≥ min{(w1 ∩ w2)(g2), w3(g1)}.

Thus µ1 ∩ µ2 = (r1 ∩ r2)e
i(w1∩w2) ≼ µ3. □

Corollary 3.12. Let In = {1, 2, ..., n} and {µi | i ∈ In} ⊆ CFST (G) such that

{µi | i ∈ In} ≼ ξ. Then µ = ∩i∈Inµi ≼ ξ.

4. Investigated obtained conceptions under group homomorphisms

Definition 4.1. Let f : G → H be a mapping and µG = rGe
iwG and µH =

rHe
iwH be two complex fuzzy sets on G and H, respectively. Define f(µG) : H →

[0, 1] as

f(µG) = f(rGe
iwG) = f(rG)e

if(wG),

such that for all h ∈ H we define

f(rG)(h) = sup{rG(g) | g ∈ G, f(g) = h}

and

f(wG)(h) = sup{wG(g) | g ∈ G, f(g) = h}.
Also define f−1(µH) : G → [0, 1] as

f−1(rHe
iwH ) = f−1(rH)e

if−1(wH)



T -NORMS OVER COMPLEX FUZZY SUBGROUPS 43

such that for all g ∈ G we define

f−1(rHe
iwH )(g) = rH(f(g))e

iwH(f(g)).

Proposition 4.1. Let µG = rGe
iwG ∈ CFST (G) and f : G → H be a group

homomorphism. Then f(µG) ∈ CFST (H).

Proof. (1) Let h1, h2 ∈ H and g1, g2 ∈ G such that h1 = f(g1) and h2 = f(g2).

Then

f(rG)(h1h2) = sup{rG(g1g2) | g1, g2 ∈ G, f(g1) = h1, f(g2) = h2}
≥ sup{T (rG(g1), rG(g2)) | g1, g2 ∈ G, f(g1) = h1, f(g2) = h2}
= T (sup{rG(g1) | g1 ∈ G, f(g1) = h1}, sup{rG(g2) | g2 ∈ G, f(g2) = h2})
= T (f(rG)(h1), f(rG)(h2))

and so

f(rG)(h1h2) ≥ T (f(rG)(h1), f(rG)(h2)).

(2) Let h ∈ H and g ∈ G such that h = f(g). Then

f(rG)(h
−1) = sup{rG(g−1) | g−1 ∈ G, f(g−1) = h−1}

≥ sup{rG(g) | g ∈ G, f−1(g) = h−1}
= sup{rG(g) | g ∈ G, f(g) = h}
= f(rG)(h)

and so

f(rG)(h
−1) ≥ f(rG)(h).

(3) Let h1, h2 ∈ H and g1, g2 ∈ G such that h1 = f(g1) and h2 = f(g2). Then

f(wG)(h1h2) = sup{wG(g1g2) | g1, g2 ∈ G, f(g1) = h1, f(g2) = h2}
≥ sup{min{wG(g1), wG(g2)} | g1, g2 ∈ G, f(g1) = h1, f(g2) = h2}
= min{sup{wG(g1) | g1 ∈ G, f(g1) = h1}, sup{wG(g2) | g2 ∈ G, f(g2) = h2})
= min{f(wG)(h1), f(wG)(h2)}

and thus

f(wG)(h1h2) ≥ min{f(wG)(h1), f(wG)(h2)}.
(4) Let h ∈ H and g ∈ G such that h = f(g). As

f(wG)(h
−1) = sup{wG(g

−1) | g−1 ∈ G, f(g−1) = h−1}
≥ sup{wG(g) | g−1 ∈ G, f−1(g) = h−1}
= sup{wG(g) | g ∈ G, f(g) = h}
= f(wG)(h)
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so

f(wG)(h
−1) ≥ f(wG)(h).

Thus (1) - (4) mean that f(µG) = f(rGe
iwG) = f(rG)e

if(wG) ∈ CFST (H). □

Proposition 4.2. Let µH = rHe
iwH ∈ CFST (H) and f : G → H be a group

homomorphism. Then f−1(µH) ∈ CFST (G).

Proof. (1) Let g1, g2 ∈ G, then

f−1(rH)(g1g2) = rH(f(g1g2))

= rH(f(g1)f(g2))

≥ T (rH(f(g1)), rH(f(g2)))

= T (f−1(rH)(g1), f
−1(rH)(g2)),

therefore

f−1(rH)(g1g2) ≥ T (f−1(rH)(g1), f
−1(rH)(g2)).

(2) Let g ∈ G then

f−1(rH)(g
−1) = rH(f(g

−1)) = rH(f
−1(g)) ≥ rH(f(g)) = f−1(rH)(g)

and thus

f−1(rH)(g
−1) ≥ f−1(rH)(g).

(3) Let g1, g2 ∈ G so

f−1(wH)(g1g2) = wH(f(g1g2))

= wH(f(g1)f(g2))

≥ min{wH(f(g1)), wH(f(g2))}
= min{f−1(wH)(g1), f

−1(wH)(g2)}

and then

f−1(wH)(g1g2) ≥ min{f−1(wH)(g1), f
−1(wH)(g2))}.

(4) Let g ∈ G then

f−1(wH)(g
−1) = wH(f

−1(g)) ≥ wH(f(g)) = f−1(wH)(g).

Therefore (1)-(4) give us f−1(rHe
iwH )(g) = rH(f(g))e

iwH(f(g)) ∈ CFST (G). □

Proposition 4.3. Let µG = rGe
iwG ∈ NCFST (G) and f : G → H be a group

homomorphism. Then f(µG) ∈ NCFST (H).
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Proof. As Proposition 4.1 we get that f(µG) ∈ CFST (H). Let g1, g2 ∈ G and

h1, h2 ∈ H such that f(g1) = h1 and f(g2) = h2. Now

f(rG)(h1h2h
−1
1 ) = sup{rG(g1g2g−1

1 ) | f(g1g2g−1
1 ) = h1h2h

−1
1 }

= sup{rG(g2) | f(g1)f(g2)f(g−1
1 ) = h1h2h

−1
1 }

= sup{rG(g2) | f(g1)f(g2)f−1(g1) = h1h2h
−1
1 }

= sup{rG(g2) | f(g2) = h2}
= f(rG)(h2).

Also

f(wG)(h1h2h
−1
1 ) = sup{wG(g1g2g

−1
1 ) | f(g1g2g−1

1 ) = h1h2h
−1
1 }

= sup{wG(g2) | f(g1)f(g2)f(g−1
1 ) = h1h2h

−1
1 }

= sup{wG(g2) | f(g1)f(g2)f−1(g1) = h1h2h
−1
1 }

= sup{wG(g2) | f(g2) = h2}
= f(wG)(h2).

Then

f(µG)(h1h2h
−1
1 ) = f(rG)(h1h2h

−1
1 )eif(wG)(h1h2h

−1
1 ) = f(rG)(h2)e

if(wG)(h2) = f(µG)(h2)

and so f(µG) ∈ NCFST (H). □

Proposition 4.4. Let µH = rHe
iwH ∈ NCFST (H) and f : G → H be a group

homomorphism. Then f−1(µH) ∈ NCFST (G).

Proof. Using Proposition 4.2 we get that f−1(µH) ∈ CFST (G). Let g1, g2 ∈ G

then

f−1(rH)(g1g2g
−1
1 ) = rH(f(g1g2g

−1
1 ))

= rH(f(g1)f(g2)f(g
−1
1 ))

= rH(f(g1)f(g2)f
−1(g1))

= rH(f(g2))

= f−1(rH)(g2).

Also

f−1(wH)(g1g2g
−1
1 ) = wH(f(g1g2g

−1
1 ))

= wH(f(g1)f(g2)f(g
−1
1 ))

= wH(f(g1)f(g2)f
−1(g1))

= wH(f(g2))

= f−1(wH)(g2).
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Thus

f−1(µH)(g1g2g
−1
1 ) = f−1(rH)(g1g2g

−1
1 )eif

−1(wH)(g1g2g
−1
1 )

= f−1(rH)(g2)e
if−1(wH)(g2)

= f−1(µH)(g2)

and thus f−1(µH) ∈ NCFST (G). □

Proposition 4.5. Let µ1 = r1e
iw1 ∈ CFST (G) and µ2 = r2e

iw2 ∈ CFST (G)

and f : G → H be a group homomorphism. If µ1 ≼ µ2, then f(µ1) ≼ f(µ2).

Proof. We know that f(µ1) = f(r1)e
if(w1) and f(µ2) = f(r2)e

if(w2). By Propo-

sition 4.1 we get that f(µ1) ∈ CFST (H) and f(µ2) ∈ CFST (H). Let g1, g2 ∈ G

and h1, h2 ∈ H such that f(g1) = h1 and f(g2) = h2. Since µ1 ≼ µ2 so r1(g1g2g
−1
1 ) ≥

T (r1(g2), r2(g1)) and w1(g1g2g
−1
1 ) ≥ min{w1(g2), w2(g1)}. Now

f(r1)(h1h2h
−1
1 ) = sup{r1(g1g2g−1

1 ) | f(g1g2g−1
1 ) = h1h2h

−1
1 }

≥ sup{T (r1(g2), r2(g1)) | f(g1)f(g2)f(g−1
1 ) = h1h2h

−1
1 }

= sup{T (r1(g2), r2(g1)) | f(g1)f(g2)f−1(g1) = h1h2h
−1
1 }

= T (sup{r1(g2) | f(g2) = h2}, sup{r2(g1) | f(g1) = h1})
= T (f(r1)(h2), f(r2)(h1))

and then

f(r1)(h1h2h
−1
1 ) ≥ T (f(r1)(h2), f(r2)(h1)).

Also

f(w1)(h1h2h
−1
1 ) = sup{w1(g1g2g

−1
1 ) | f(g1g2g−1

1 ) = h1h2h
−1
1 }

≥ sup{min{w1(g2), w2(g1)} | f(g1)f(g2)f(g−1
1 ) = h1h2h

−1
1 }

= sup{min{w1(g2), w2(g1)} | f(g1)f(g2)f−1(g1) = h1h2h
−1
1 }

= min{sup{w1(g2) | f(g2) = h2}, sup{w2(g1) | f(g1) = h1}}
= min{f(w1)(h2), f(w2)(h1)}

and so

f(w1)(h1h2h
−1
1 ) ≥ min{f(w1)(h2), f(w2)(h1)}.

Then f(µ1) ≼ f(µ2). □

Proposition 4.6. Let µ1 = r1e
iw1 ∈ CFST (H) and µ2 = r2e

iw2 ∈ CFST (H)

and f : G → H be a group homomorphism. If µ1 ≼ µ2, then f−1(µ1) ≼ f−1(µ2).

Proof. Let f−1(µ1) = f−1(r1)e
if−1(w1) and f−1(µ2) = f−1(r2)e

if−1(w2) and as

Proposition 4.2 we obtain that f−1(µ1) ∈ CFST (G) and f−1(µ2) ∈ CFST (G). Let
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g1, g2 ∈ G then

f−1(r1)(g1g2g
−1
1 ) = r1(f(g1g2g

−1
1 ))

= r1(f(g1)f(g2)f(g
−1
1 ))

= r1(f(g1)f(g2)f
−1(g1))

≥ T (r1(f(g2)), r2(f(g1)))

= T (f−1(r1)(g2), f
−1(r2)(g1).

Also

f−1(w1)(g1g2g
−1
1 ) = w1(f(g1g2g

−1
1 ))

= w1(f(g1)f(g2)f(g
−1
1 ))

= w1(f(g1)f(g2)f
−1(g1))

≥ min{w1(f(g2)), w2(f(g1))}
= min{f−1(w1)(g2), f

−1(w2)(g1}.

Therefore f−1(µ1) ≼ f−1(µ2). □
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