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On various properties of module Lau product of

algebras
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Abstract. Let A, B, and X be complex algebras, θ : B −→ X be an algebra

homomorphism, and let A be an X -bimodule. We define a product on A × B as

(a1, b1)(a2, b2) = (a1a2+a1 ·θ(b2)+θ(b1)◦a2, b1b2) for all (a1, b1), (a2, b2) ∈ A×B
and write A×B with this product by A×θB. We shall study some basic properties

of A ×θ B. When A, B and X are Banach algebras, A is a Banach X -bimodule,

and θ is a continuous homomorphism with the norm at most 1, we determine the

ideals of A×θ B of a certain type, the Gelfand space of this Banach algebra, and

the module multipliers of this Banach algebra.

1. Introduction

Let A and X be complex algebras. An algebra A is a left X−module if there

exists a bilinear map (α, a) ∈ X × A 7→ α ◦ a ∈ A satisfying (αβ) ◦ a = α ◦ (β ◦ a)
and α ◦ (ab) = (α ◦ a)b for all α, β ∈ X and a, b ∈ A. It is a right X−module if there

exists a bilinear map (a, α) ∈ A × X 7→ a · α ∈ A satisfying (ab) · α = a(b · α) and
a · (αβ) = (a · α) · β for all α, β ∈ X and a, b ∈ A. It is a X−bimodule if it is both

left X−module, right X−module, α ◦ (a · β) = (α ◦ a) · β and (a · α)b = a(α ◦ b)
for all α, β ∈ X and a, b ∈ A. It is a symmetric X−bimodule if it is X−bimodule,

α ◦ a = a · α for all a ∈ A and α ∈ X .
Let (A, ∥ · ∥A) and (X , ∥ · ∥X ) be normed algebras. Then A is a normed left

X−module if it is a left X−module and there exists a constant P > 0 such that ∥α◦
a∥A ≤ P∥α∥X∥a∥A for all α ∈ X and a ∈ A. It is a normed right X−module if it is a
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right X−module and there exists a constant Q > 0 such that ∥a·α∥A ≤ Q∥a∥A∥α∥X
for all a ∈ A and α ∈ X . It is a normed X−bimodule if it is an X−bimodule and

there is R > 0 such that ∥α ◦ a∥A ≤ R∥α∥X∥a∥A and ∥a ·α∥A ≤ R∥a∥A∥α∥X for all

a ∈ A and α ∈ X . It is a Banach X−bimodule if both A and X are complete as a

normed linear space.

Definition 1.1. Let A, B, and X be complex algebras, θ : B −→ X be an

algebra homomorphism, and let A be an X−bimodule. We define a product on

A× B as

(a1, b1)(a2, b2) = (a1a2 + a1 · θ(b2) + θ(b1) ◦ a2, b1b2)

for all (a1, b1), (a2, b2) ∈ A × B. Then A × B together with co-ordinatewise linear

operations and the above product is an associative algebra. We denote this algebra

by A×θ B.

If (A, ∥ · ∥A), (B, ∥ · ∥B), and (X , ∥ · ∥X ) are Banach algebras, A is a Banach

X−bimodule and θ : B −→ X is an algebra homomorphism with ∥θ∥ ≤ 1, then

A×θ B is the Banach algebra with the norm ∥(a, b)∥1 = ∥a∥A + ∥b∥B.
If we define a norm on A ×θ B as |(a, b)| = max{∥a∥A + ∥θ(b)∥X , ∥b∥B} for all

(a, b) ∈ A ×θ B, then (A ×θ B, | · |) is also a Banach algebra. In fact, ∥(a, b)∥1 ≤
2|(a, b)| ≤ 2∥(a, b)∥1 for all (a, b) ∈ A ×θ B. If we identify A × {0} with A and

{0} × B with B in A×θ B, then A and B are closed ideal and closed subalgebra of

A×θ B respectively and the quotient (A×θ B)/A is isometrically isomorphic to B,
i.e., A×θ B is a strong splitting Banach algebra extension of B by A. Throughout

the paper, all algebras are considered to be complex algebras.

The above multiplication on A × B generalizes some known multiplication on

the product space A× B. They are as follows.

(1) Let A and B be algebras, let X = C, and let θ : B → C be a homomorphism.

Then A is a C−bimodule with respect to the module operations defined as a · α =

α ◦ a = αa for all α ∈ C and a ∈ A. It can be seen that A ×θ B is the θ−Lau

product of A and B.
Lau first introduced θ−Lau product in [7] for certain classes of Banach algebras.

Later, it was extended and studied by Monfared for general case in [8]. Various

Banach algebra properties of A ×θ B are studied in different papers, for example,

[1, 2, 4, 5, 6, 8, 9] etc.

(2) Let A and B be algebras, and let X = A. It is clear that A is a A−bimodule

with respect to the module operations defined as (a1, a2) ∈ A×A 7→ a1a2 ∈ A and

(a1, a2) ∈ A × A 7→ a2a1 ∈ A for all a1, a2 ∈ A. Let θ : B −→ A be an algebra

homomorphism. It can be seen that A×θ B is the T−Lau product of A and B [3].

(3) Let A and B be algebras, B = X , A be an X−bimodule, and θ = I, the identity

map. Then θ is an algebra homomorphism and A is an algebraic B−module. Then
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A ×θ B is the ▷◁ −product of A and B. Ramezanpour and Barootkoob introduced

▷◁ −product in [10].

(4) Let A, B, X be algebras, and let A be an X−bimodule. If we define θ : B −→ X
as θ(b) = 0 for all b ∈ B, then θ is an algebra homomorphism. Clearly, A ×θ B is

the Cartesian product of A and B.

2. Some basic properties of A×θ B

An algebra A is commutative if ab = ba for all a, b ∈ A. An element e ∈ A is an

identity for A if ae = a = ea for all a ∈ A.

Lemma 2.1. Let A, B, and X be algebras, θ : B −→ X be an algebra homo-

morphism, and let A be a symmetric X−bimodule. Then the following statements

hold.

(1) A×θ B is commutative if and only if A and B are commutative.

(2) (0, eB) is the identity for A×θ B if and only if eB is the identity for B and

a · θ(eB) = a for all a ∈ A.

Proof. The statement (1) is a simple verification.

(2) Let (0, eB) be the identity forA×θB. It follows from (a·θ(eB), beB) = (a, b)(0, eB) =

(a, b) = (0, eB)(a, b) = (θ(eB)◦a, eBb) that a ·θ(eB) = a = θ(eB)◦a and beB = b = eBb

for all a ∈ A and b ∈ B.
Conversely, let eB be the identity for B and a ·θ(eB) = a for all a ∈ A. Since A is

a symmetric X−bimodule, (a, b)(0, eB) = (a · θ(eB), beB) = (a, b) and (0, eB)(a, b) =

(θ(eB) ◦ a, eBb) = (a, b) for all (a, b) ∈ A×θ B. □

A net {eα}α∈Λ of elements of A is a bounded left approximate identity for a

normed algebra (A, ∥ · ∥A) if there exists some M > 0 such that ∥eα∥A ≤ M for all

α ∈ Λ and ∥eαa − a∥A → 0 for all a ∈ A. Similarly, a bounded right approximate

identity and a bounded (two sided) approximate identity are defined.

Proposition 2.2. Let (A, ∥ · ∥A), (B, ∥ · ∥B), and (X , ∥ · ∥X ) be normed algebras,

θ : B −→ X be an algebra homomorphism with ∥θ∥ ≤ 1, and let A be a normed

X−bimodule. Then {(eα, fα)}α∈Λ is a bounded left (right, or two sided) approximate

identity for A ×θ B if and only if {fα}α∈Λ is a bounded left (right, or two sided)

approximate identity for B, {eα}α∈Λ is bounded, ∥eαa + θ(fα) ◦ a − a∥A → 0, and

∥eα · θ(b)∥A → 0.

Proof. Let {(eα, fα)}α∈Λ be a bounded left approximate identity for A ×θ B.
Then there exists some M > 0 such that |(eα, fα)| ≤ M for all α ∈ Λ and

|(eα, fα)(a, b) − (a, b)| → 0 for all (a, b) ∈ A ×θ B. By definition of | · |, the nets



4 P. A. DABHI AND Y. D. PIPALIYA

{eα}α∈Λ and {fα}α∈Λ are bounded. If b ∈ B,

max{∥eα · θ(b)∥A, ∥fαb− b∥B} ≤ max {∥eα · θ(b)∥A + ∥θ(fαb− b)∥X , ∥fαb− b∥B}
= |(eα · θ(b), fαb− b)| = |(eα, fα)(0, b)− (0, b)|.

If a ∈ A,

∥eαa+ θ(fα) ◦ a− a∥A = max {∥eαa+ θ(fα) ◦ a− a∥A + ∥0∥X , ∥0∥B}
= |(eαa+ θ(fα) ◦ a− a, 0)| = |(eα, fα)(a, 0)− (a, 0)|.

So, ∥fαb− b∥B → 0, ∥eα · θ(b)∥A → 0, and ∥eαa+ θ(fα) ◦ a− a∥A → 0.

Assume the converse. Let (a, b) ∈ A×θ B. Then

|(eα, fα)(a, b)− (a, b)|
= max{∥eαa+ eα · θ(b) + θ(fα) ◦ a− a∥A + ∥θ(fαb− b)∥X , ∥fαb− b∥B}
≤ max{∥eαa+ θ(fα) ◦ a− a∥A + ∥eα · θ(b)∥A + ∥θ(fαb− b)∥X , ∥fαb− b∥B}.

It follows from the fact ∥θ∥ ≤ 1 and our assumptions that {(eα, fα)}α∈Λ is a bounded

left approximate identity for A×θ B. □

An element a ∈ A is an idempotent if a2 = a and a non-zero idempotent a is a

minimal idempotent if aAa is a division algebra or aAa = Ca. Let A, B, and X be

algebras, θ : B −→ X be an algebra homomorphism. It is clear that (a, b) ∈ A×θ B
is an idempotent if and only if b ∈ B is an idempotent and a2+a ·θ(b)+θ(b)◦a = a.

Proposition 2.3. Let A, B, and X be algebras, θ : B −→ X be an injective

algebra homomorphism. Then (a, b) is a minimal idempotent in A×θ B if and only

if (a, θ(b)) is a minimal idempotent in A ▷◁ θ(B) and b is a minimal idempotent in

B provided b ̸= 0.

Proof. Let (a, b) ∈ A ×θ B be a minimal idempotent, i.e., (a, b)2 = (a, b) and

(a, b)(A ×θ B)(a, b) = C(a, b) or (a, b)2 = (a, b) and given (a0, b0) ∈ A ×θ B, there
exists some λ(a0,b0) ∈ C such that (a, b)(a0, b0)(a, b) = λ(a0,b0)(a, b). So,

a2 + a · θ(b) + θ(b) ◦ a = a, (1)

b2 = b and (2)

aa0a+ (a · θ(b0))a+ (θ(b) ◦ a0)a+ aa0 · θ(b) + (a · θ(b0)) · θ(b)
+(θ(b) ◦ a0) · θ(b) + θ(bb0) ◦ a = λ(a0,b0)a, (3)

bb0b = λ(a0,b0)b. (4)

It follows from equations (2) and (4) that if b ̸= 0, then b is a minimal idempotent

with λ(a0,b0) = λ(0,b0) for all a0 ∈ A and it follows from above four equations that

(a, θ(b))2 = (a, θ(b)) and (a, θ(b))(a0, θ(b0))(a, θ(b)) = λ(a0,b0)(a, θ(b)) for all (a0, b0) ∈
A×θ B.
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Conversely, let b ∈ B be a minimal idempotent, i.e., b2 = b and for given

b1 ∈ B, there exists some λb1 ∈ C such that bb1b = λb1b. This gives θ(bb1b) =

θ(λb1b). Since (a, θ(b)) ∈ A ▷◁ θ(B) is a minimal idempotent, i.e., (a, θ(b))2 =

(a, θ(b)) and for given (a0, θ(b0)) ∈ A ▷◁ θ(B), there exists some λ(a0,θ(b0)) ∈ C such

that (a, θ(b))(a0, θ(b0))(a, θ(b)) = λ(a0,θ(b0))(a, θ(b)). So, (a, θ(b))(a0, θ(b1))(a, θ(b)) =

λ(a0,θ(b1))(a, θ(b)). It follows from injectivity of θ that λ(a0,θ(b1)) = λb1 . The case b = 0

is easy to verify. □

The following example show that the condition that θ is injective in the Propo-

sition 2.3 is necessary.

Example 2.1. We consider the semigroup N with the gcd binary operation and

we denote N with this binary operation by Ngcd. The semigroup algebra

ℓ1(N) = {f : N → C : ∥f∥ =
∑
n∈N

|f(n)| <∞}

is a commutative Banach algebra with the above norm and the convolution multi-

plication

(f ⋆ g)(n) =
∑

gcd(u,v)=n

f(u)g(v) (f, g ∈ ℓ1(Ngcd), n ∈ N).

We write an element f of ℓ1(Ngcd) by f =
∑

n∈N f(n)δn, where δn : N → C is defined

by δn(n) = 1 and δn(m) = 0 if m ̸= n. Take A = B = ℓ1(Ngcd) and define θ : B → C
by θ(f) =

∑
n∈N f(2n) for all f ∈ B. Then θ is a complex homomorphism on B

and θ is not injective. Note that δ1 ⋆ δm = δgcd(1,m) = δ1 for all m ∈ N. So, if

f =
∑

n∈N f(n)δn ∈ ℓ1(N), then δ1 ⋆ f =
∑

n∈N f(n)δ1 =
(∑

n∈N f(n)
)
δ1. Clearly,

δ1 ⋆ δ1 = δ1 and δ1 ⋆ f ⋆ δ1 =
(∑

n∈N f(n)
)
δ1, i.e., δ1 is a minimal idempotent in B.

We now show that (δ1, θ(δ1)) = (δ1, 0) is a minimal idempotent in A ▷◁ θ(B). First
observe that (δ1, 0)(δ1, 0) = (δ1, 0). Let (f, θ(g)) be in A ▷◁ θ(B). Then

(δ1, 0)(f, θ(g))(δ1, 0) = (δ1 ⋆ f + θ(g)δ1, 0)(δ1, 0)

= (

(∑
n∈N

f(n) + θ(g)

)
δ1, 0)(δ1, 0)

= (

(∑
n∈N

f(n) + θ(g)

)
δ1, 0)

=

(∑
n∈N

f(n) + θ(g)

)
(δ1, 0).
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Therefore (δ1, θ(δ1)) is a minimal idempotent in A ▷◁ θ(B). We now show that

(δ1, δ1) is not a minimal idempotent in A×θ B. Notice that

(δ1, δ1)(δ2, δ2)(δ1, δ1) = (δ1 ⋆ δ2 + θ(δ2)δ1 + θ(δ1)δ2, δ1)(δ1, δ1)

= (δ1 + δ1, δ1)(δ1, δ1)

= (2δ1, δ1),

and (2δ1, δ1) ̸= λ(δ1, δ1) for any λ ∈ C. Therefore (δ1, δ1) is not a minimal idempo-

tent in A×θ B.

2.1. Ideals of the type I × J in A×θ B. A subset I of A is a left ideal in A
if I is a linear subspace of A and aI ⊆ I for all a ∈ A. Similarly, a right ideal and

an ideal are defined. A left ideal I is a modular left ideal in A with modular unit u

if there exists u ∈ A such that au − a ∈ I for all a ∈ A. Similarly, a modular right

ideal and a modular ideal are defined. An ideal I is proper if I ̸= A. A proper left

ideal I is maximal if J = I or J = A whenever J is a left ideal in A containing I.

An ideal I is a prime ideal if a ∈ I or b ∈ I whenever a, b ∈ A and ab ∈ I.

Proposition 2.4. Let K be a left ideal in a Banach algebra A ×θ B. Define
two sets I = {a ∈ A : (a, b) ∈ K for some b ∈ B} and J = {b ∈ B : (a, b) ∈
K for some a ∈ A}. Then the following statements hold.

(1) J is a left ideal in B.
(2) If θ vanishes on J , then I is a left ideal in A. If in addition A has a left

approximate identity and K is closed in A×θ B, then K = I × J.

(3) If θ does not vanish on J and A · θ(J) ⊆ I, then I is a left ideal in A

Proof. (1) Let b ∈ J. Then there exists some a ∈ A such that (a, b) ∈ K. Let

b1 ∈ B. Then (θ(b1) ◦ a, b1b) = (0, b1)(a, b) ∈ K, i.e., we get an element θ(b1) ◦ a ∈ A
such that (θ(b1) ◦ a, b1b) ∈ K. Hence b1b ∈ J.

(2) Let θ vanish on J and a ∈ I. Then there exists some b ∈ B such that

(a, b) ∈ K. Since a ∈ I ⊆ A, by definition of J , we have b ∈ J. Let a1 ∈ A. Then
(a1a, 0) = (a1a + a1 · θ(b), 0) = (a1, 0)(a, b) ∈ K, i.e., we get an element 0 ∈ B such

that (a1a, 0) ∈ K. Therefore, a1a ∈ I.

Let {aα}α∈Λ be a left approximate identity for A and K be closed in A ×θ B.
By definitions of I and J , K ⊆ I × J. Now, let p ∈ I and q ∈ J. We show that

(p, q) ∈ K. Since p ∈ I and q ∈ J, there exist b ∈ B and a ∈ A such that (p, b) ∈
K and (a, q) ∈ K. Then (aαa, 0) = (aαa + aα · θ(q), 0) = (aα, 0)(a, q) ∈ K and

|(aαa, 0) − (a, 0)| = ∥aαa − a∥A → 0. Since K is closed in A ×θ B, (a, 0) ∈ K.

Similarly, we can show that (p, 0) ∈ K. So, (0, q) = (a, q) − (a, 0) ∈ K. Hence

(p, q) = (p, 0) + (0, q) ∈ K.

(3) It follows from the proof of (2). □
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Lemma 2.5. Let I and J be two non-empty subsets of A and B respectively.

Then I × J is a left ideal in A×θ B if and only if I is a left ideal in A, J is a left

ideal in B, A · θ(J) ⊆ I and θ(B) ◦ I ⊆ I.

Proof. Let I × J be a left ideal in A ×θ B. Then for all (a, b) ∈ A ×θ B and

(i, j) ∈ I×J, (ai+a·θ(j)+θ(b)◦i, bj) = (a, b)(i, j) ∈ I×J or ai+a·θ(j)+θ(b)◦i ∈ I

and bj ∈ J. So, J is a left ideal in B and ai + a · θ(j) + θ(b) ◦ i ∈ I. In particular,

taking a = 0, we get θ(b) ◦ i ∈ I, i.e., θ(B) ◦ I ⊆ I and taking i = 0 and j = 0

respectively, we get a · θ(j) ∈ I, i.e., A · θ(J) ⊆ I and ai + θ(b) ◦ i ∈ I and so

ai = (ai+ θ(b) ◦ i)− (θ(b) ◦ i) ∈ I.

Assume the converse. Let (a, b) ∈ A ×θ B and (i, j) ∈ I × J. Then (a, b)(i, j) =

(ai+ a · θ(j) + θ(b) ◦ i, bj) ∈ I × J by our assumption. □

Let A be an X−bimodule. A left ideal I is a modular left X−ideal in A with

modular X−unit x if there exists x ∈ X such that ax−a ∈ I for all a ∈ A. Similarly,

a modular right X−ideal and a modular X−ideal are defined.

Proposition 2.6. Let I be a left ideal in A and J be a left ideal in B. Then
I × J is a modular left ideal in A×θ B with modular unit (i, j) if and only if I is a

modular left X−ideal in A with modular X−unit θ(j), J is a modular left ideal in

B with modular unit j, A · θ(J) ⊆ I and θ(B) ◦ I ⊆ I.

Proof. Let I × J be a modular left ideal in A ×θ B with modular unit (i, j).

Then for all (a, b) ∈ A×θ B, (a, b)(i, j)− (a, b) ∈ I×J or ai+a · θ(j)+ θ(b) ◦ i−a ∈
I and bj − b ∈ J. So, J is a modular left ideal in B with modular unit j and

ai+ a · θ(j) + θ(b) ◦ i− a ∈ I. By Lemma 2.5, I is a left ideal in A, J is a left ideal

in B, and A · θ(J) ⊆ I, θ(B) ◦ I ⊆ I. Since I is a left ideal in A, ai ∈ I and so

a · θ(j) + θ(b) ◦ i− a ∈ I for all a ∈ A and b ∈ B. In particular, taking b = 0, we get

a · θ(j) − a ∈ I for all a ∈ A. So, I is a modular left X−ideal in A with modular

X−unit θ(j).

Assume the converse. Let (a, b) ∈ A ×θ B and (i, j) ∈ I × J. Then (a, b)(i, j)−
(a, b) = (ai+ a · θ(j) + θ(b) ◦ i− a, bj − b) ∈ I × J by our assumptions. □

Lemma 2.7. Let K be a left ideal in A×θ B containing {0} × B. Then there is

a left ideal I in A such that K = I × B. If K is a left ideal in A ×θ B containing

A× {0}, then there is a left ideal J in B such that K = A× J.

Proof. Let K be a left ideal in A ×θ B containing {0} × B. Let I = {a ∈ A :

(a, b) ∈ K for some b ∈ B}. It is enough to prove that I is a left ideal in A. For
that, let i ∈ I. Then there exists b ∈ B such that (i, b) ∈ K. Since (0, b) ∈ {0}×B ⊆
K, (i, 0) ∈ K. Let a ∈ A. Then (ai, 0) = (a, 0)(i, 0) ∈ K. Therefore I is a left ideal

in A.
One can prove the second statement in a similar way. □
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Proposition 2.8. Let I and J be left ideals of A and B respectively. Then the

following statements hold.

(1) I × B is a maximal left ideal in A ×θ B if and only if I is a maximal left

ideal in A, A · θ(B) ⊆ I and θ(B) ◦ I ⊆ I.

(2) A× J is a maximal left ideal in A×θ B if and only if J is a maximal left

ideal in B.
(3) I × J is a maximal left ideal in A×θ B if and only if either I = A with J

is a maximal left ideal in B or J = B with I is a maximal left ideal in A,
A · θ(J) ⊆ I and θ(B) ◦ I ⊆ I.

Proof. It follows from Lemma 2.5 and Lemma 2.7. □

Proposition 2.9. Let A be a symmetric X−bimodule, I be an ideal in A, and
J be an ideal in B. Then I ×J is a prime ideal in A×θ B if and only if I is a prime

ideal in A, J is a prime ideal in B, A · θ(J) ⊆ I and θ(B) ◦ I ⊆ I.

Proof. Let I × J be a prime ideal in A×θ B. It follows from Lemma 2.5 that I

is a left ideal in A, J is a left ideal in B, A·θ(J) ⊆ I and θ(B)◦I ⊆ I. Let a1, a2 ∈ A
be such that a1a2 ∈ I. Then (a1, 0)(a2, 0) = (a1a2, 0) ∈ I × J. It follows that a1 ∈ I

or a2 ∈ I, i.e., I is a prime ideal in A. Similarly, J is a prime ideal in B.
Assume the converse. By Lemma 2.5, I×J is an ideal inA×θB. Let (a1, b1), (a2, b2) ∈

A×θ B be such that (a1, b1)(a2, b2) ∈ I × J or a1a2 + a1 · θ(b2) + θ(b1) ◦ a2 ∈ I and

b1b2 ∈ J. Since J is a prime ideal in B, either b1 ∈ J or b2 ∈ J. We are in a situation

of two cases.

Case I: Let b1 ∈ J. Since A is a symmetric X−bimodule, θ(J)◦A = A·θ(J) ⊆ I.

So, θ(b1) ◦ a2 = a2 · θ(b1) ∈ I. Therefore, a1a2 + a1 · θ(b2) ∈ I. This implies that

(a1, 0)(a2, b2) = (a1a2+a1 · θ(b2), 0) ∈ I×{0}. It is clear that I is a prime ideal in A
if and only if I ×{0} is a prime ideal in A×{0}. So, we get either (a1, 0) ∈ I ×{0}
or (a2, b2) ∈ I × {0}. If (a1, 0) ∈ I × {0} then a1 ∈ I and so (a1, b1) ∈ I × J. If

(a2, b2) ∈ I × {0} then a2 ∈ I and b2 = 0 ∈ {0} ⊆ J. So, (a2, b2) ∈ I × J.

Case II: Let b2 ∈ J. Then a1 ·θ(b2) ∈ I and so a1a2+θ(b1)◦a2 ∈ I. This implies

that (a1, b1)(a2, 0) = (a1a2 + θ(b1) ◦ a2, 0) ∈ I × {0}. It follows from the above same

argument that either (a1, b1) ∈ I × J or (a2, b2) ∈ I × J. □

2.2. Gelfand space of A×θ B. Let A be a commutative Banach algebra and

A∗ be the dual of A. A nonzero linear map φ : A → C is a complex homomorphism if

φ(ab) = φ(a)φ(b) for all a, b ∈ A. Let ∆(A) be the set of all complex homomorphism

on A. Clearly, ∆(A) ⊆ A∗. For a ∈ A, let â : ∆(A) → C be â(φ) = φ(a) for all

φ ∈ ∆(A). The weakest topology on ∆(A) in which all â, a ∈ A, are continuous

is the Gelfand topology on ∆(A). The set ∆(A) with the Gelfand topology is the

Gelfand space of A. Note that if a ∈ A, then â ∈ C0(∆(A)), where C0(∆(A)) is

the collection of all continuous functions on ∆(A) vanishing at infinity. The map
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a ∈ A 7→ â ∈ C0(∆(A)) is the Gelfand map. A commutative Banach algebra A is

semisimple if the Gelfand map is injective.

Next theorem gives the Gelfand space of A×θ B.

Theorem 2.10. Let A, B, and X be commutative Banach algebras, A be a

symmetric Banach X−bimodule, and θ : B −→ X be an algebra homomorphism

with ∥θ∥ ≤ 1. Then the Gelfand space ∆(A ×θ B) of A ×θ B is a disjoint union of

the sets E := {(φ, φ(aφ · θ(·))) : φ ∈ ∆(A), aφ ∈ A such that φ(aφ) = 1} and F :=

{(0, ψ) : ψ ∈ ∆(B)}.

Proof. Let Φ ∈ ∆(A×θB). Since ∆(A×θB) ⊆ (A×θB)∗, there exist φ ∈ A∗ and

ψ ∈ B∗ such that Φ = (φ, ψ). Let (a1, b1), (a2, b2) ∈ A×θB. Then (φ, ψ)[(a1, b1)(a2, b2)] =

(φ, ψ)(a1, b1)(φ, ψ)(a2, b2) or (φ, ψ)(a1a2 + a1 · θ(b2) + θ(b1) ◦ a2, b1b2) = (φ(a1) +

ψ(b1))(φ(a2) + ψ(b2)) or

φ(a1a2 + a1 · θ(b2) + θ(b1) ◦ a2) + ψ(b1b2) = φ(a1)φ(a2) + φ(a1)ψ(b2)

+ψ(b1)φ(a2) + ψ(b1)ψ(b2). (5)

In particular, taking b1 = b2 = 0 and a1 = a2 = 0 in equation (5) respectively,

we get φ(a1a2) = φ(a1)φ(a2) and ψ(b1b2) = ψ(b1)ψ(b2). The equation (5) gives

φ(a1 · θ(b2)) + φ(θ(b1) ◦ a2) = φ(a1)ψ(b2) + ψ(b1)φ(a2) (6)

for all (a1, b1), (a2, b2) ∈ A ×θ B. Let φ ̸= 0. Then there exists aφ ∈ A such that

φ(aφ) = 1. Taking a1 = a2 = aφ and b1 = b2 = b in equation (6), we get φ(aφ ·θ(b)) =
φ(aφ)ψ(b). Therefore, ψ(·) = φ(aφ · θ(·)). One can observe that ψ(·) is independent
of the choice of aφ satisfying φ(aφ) = 1. Indeed, let a1, a2 ∈ A such that φ(a1) =

1 = φ(a2). Since A is a symmetric X−bimodule, we have (a1 · θ(·))a2 = a1(θ(·) ◦ a2)
and so φ((a1 · θ(·))a2) = φ(a1(θ(·) ◦ a2)) or φ(a1 · θ(·))φ(a2) = φ(a1)φ(θ(·) ◦ a2) or
φ(a1 · θ(·)) = φ(θ(·) ◦ a2) for all φ ∈ ∆(A). Therefore, the map φ(aφ · θ(·)) is well-
defined. Since φ(aφ) = 1 and A is symmetric, the map φ(aφ · θ(·)) is multiplicative.

Indeed,

φ(aφ · θ(b1b2)) = φ(aφ · (θ(b1)θ(b2))) = φ(aφ · (θ(b1)θ(b2)))φ(aφ)
= φ((aφ · (θ(b1)θ(b2)))aφ) = φ([(aφ · θ(b1)) · θ(b2)]aφ)
= φ([aφ · θ(b1)][θ(b2) ◦ aφ]) = φ(aφ · θ(b1))φ(θ(b2) ◦ aφ)
= φ(aφ · θ(b1))φ(aφ · θ(b2))

for all b1, b2 ∈ B. Therefore, (φ, ψ) ∈ E. Next, let φ = 0. Then ψ ∈ ∆(B) and

(0, ψ) ∈ F. Hence ∆(A×θ B) ⊆ E ∪ F .
Conversely, let Φ ∈ E ∪ F. Then computation shows that Φ ∈ ∆(A×θ B). □

Corollary 2.11. Assume the hypothesis of Theorem 2.10. Then sets E and F

are open and closed in ∆(A×θ B) respectively.
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Proof. Let (φ, φ(θ(·) ◦ aφ)) ∈ E. Since φ ∈ ∆(A), there exists a0 ∈ A such

that φ(a0) ̸= 0. Take ε = |φ(a0)|
4

and U = U ((φ, φ(θ(·) ◦ aφ)) , (a0, 0), ε). Then U is

a neighborhood of (φ, φ(θ(·) ◦ aφ)) and

U = {(φ1, ψ1) ∈ ∆(A×θ B) :|(φ1, ψ1)((a0, 0))− (φ, φ(θ(·) ◦ aφ)) ((a0, 0))|< ε}
= {(φ1, ψ1) ∈ ∆(A×θ B) : |φ1(a0)− φ(a0)| < ε} .

If we take any point (0, ψ) ∈ U, then 4ε = |φ(a0)| < ε, a contradiction. Therefore,

U ⊂ E. Hence E is open in ∆(A×θ B) and so F is closed in ∆(A×θ B). □

Corollary 2.12. Assume the hypothesis of Theorem 2.10. Then A ×θ B is

semisimple if and only if both A and B are semisimple.

Proof. Let A×θB be semisimple. Let a ∈ A and b ∈ B satisfy â = 0 and b̂ = 0,

i.e., â(φ) = 0 and b̂(ψ) = 0 for all φ ∈ ∆(A) and ψ ∈ ∆(B). Then (̂a, 0)(Φ) = 0 and

(̂0, b)(Φ) = 0 for all Φ ∈ ∆(A×θ B). Since A×θ B is semisimple, a = b = 0.

Conversely, let A and B be semisimple. Let (a, b) ∈ A ×θ B be such that

(̂a, b)((φ, ψ)) = 0 for all (φ, ψ) ∈ ∆(A ×θ B). In particular, taking φ = 0, we get

b̂(ψ) = (̂a, b)((0, ψ)) = 0. It follows from semisimplicity of B that b = 0, which

implies that â(φ) = (̂a, 0)((φ, φ(θ(0) ◦ a)) = 0. The semisimplicity of A implies that

a = 0. □

2.3. Module multipliers of A ×θ B. Let A, X, and X be Banach algebras,

and let A be an X−bimodule. Then X is a Banach A − X−bimodule if X is a

Banach A−bimodule as well as a Banach X−bimodule which satisfies conditions

(ax)α = a(xα), x(αa) = (xα)a, α(ax) = (αa)x, α(xa) = (αx)a, x(aα) = (xa)α, and

(aα)x = a(αx) for all a ∈ A, x ∈ X, and α ∈ X . Let X be an A−bimodule, and

let AnnX(A) := {x ∈ X : ax = 0 = xa for all a ∈ A} be the annihilator of A in

X. A homomorphism T : A → X is a module homomorphism if T (a1a2) = T (a1)a2
and T (a1a2) = a1T (a2) for all a1, a2 ∈ A. Moreover, if T (a1)a2 = a1T (a2) for all

a1, a2 ∈ A, then it is a module multiplier. Let M(A, X) be the set of all module

multipliers from A to X.

Let X be a Banach A − X−bimodule, Y be a Banach B − X−bimodule, and

θ : B −→ X be a module homomorphism. Define module multiplications on X ×
Y as α(x, y) = (αx, αy), (x, y)α = (xα, yα), (a, b)(x, y) = (ax + θ(b)x, by), and

(x, y)(a, b) = (xa + xθ(b), yb), respectively, for all α ∈ X , (x, y) ∈ X × Y and

(a, b) ∈ A×θ B.

Lemma 2.13. Let A, B, and X be Banach algebras, A be a symmetric Banach

X−bimodule, B be a Banach X−bimodule, and let θ : B −→ X be a module homo-

morphism with ∥θ∥ ≤ 1. If X is a Banach A − X−bimodule and Y is a Banach

B − X−bimodule, then X × Y is a Banach (A×θ B)−X−bimodule with the above

module multiplications.
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Proof. We haveX a BanachA−X−bimodule and Y a Banach B−X−bimodule

with the module multiplication (a, x) ∈ A×X 7→ ax ∈ X, (x, a) ∈ X×A 7→ xa ∈ X,

(α, x) ∈ X ×X 7→ αx ∈ X, (x, α) ∈ X × X 7→ xα ∈ X, (b, y) ∈ B × Y 7→ by ∈ Y,

(y, b) ∈ Y × B 7→ yb ∈ Y, (α, y) ∈ X × Y 7→ αy ∈ Y, and (y, α) ∈ Y ×X 7→ yα ∈ Y

for all α ∈ X , x ∈ X, y ∈ Y, a ∈ A, and b ∈ B. Define four mappings as below.

(1) (α, (x, y)) ∈ X × (X × Y ) 7→ α(x, y) ∈ (X × Y ),

(2) ((x, y), α) ∈ (X × Y )×X 7→ (x, y)α ∈ (X × Y ),

(3) ((a, b), (x, y)) ∈ (A×θ B)× (X × Y ) 7→ (a, b)(x, y) ∈ (X × Y ), and

(4) ((x, y), (a, b)) ∈ (X × Y )× (A×θ B) 7→ (x, y)(a, b) ∈ (X × Y ),

where module multiplications are defined as said in hypothesis. One may verify

that X×Y together with above module multiplications satisfies all conditions to be

(A×θ B)−X−bimodule. □

The following theorem gives characterization of module multipliers from A×θ B
to X × Y.

Theorem 2.14. Let A, B, and X be algebras, A be an X−bimodule, B be an

X−bimodule, θ : B −→ X be a module homomorphism, X be a symmetric A-X -

bimodule, Y be a B-X -bimodule with AnnY (B) = {0}, and let T : A×θB −→ X×Y
be a module homomorphism. Then T ∈ M(A ×θ B, X × Y ) if and only if there

exists module homomorphisms T1 : A ×θ B −→ X and T2 : A ×θ B −→ Y such

that T = (T1, T2), T1 |A×{0}∈ M(A, X), T2 |A×{0}= {0}, T2 |{0}×B ∈ M(B, Y ), and

θ(b1)T1(a2, b2) = T1(0, b1)a2 + T1(0, b1)θ(b2) for all a2 ∈ A and b1, b2 ∈ B.

Proof. Let T ∈ M(A ×θ B, X × Y ). Let (a1, b1), (a2, b2) ∈ A ×θ B. Then

(T (a1, b1))(a2, b2)

= (a1, b1)(T (a2, b2)) or (T1(a1, b1), T2(a1, b1))(a2, b2) = (a1, b1)(T1(a2, b2), T2(a2, b2))

or

T1(a1, b1)a2 + T1(a1, b1)θ(b2) = a1T1(a2, b2) + θ(b1)T1(a2, b2) (7)

and

T2(a1, b1)b2 = b1T2(a2, b2). (8)

Taking a1 = b2 = 0 in equations (7) and (8), we get T1(0, b1)a2 = θ(b1)T1(a2, 0) and

b1T2(a2, 0) = 0. Since AnnY (B) = {0}, T2(a2, 0) = 0 for all a2 ∈ A, i.e., T2 |A×{0}=

{0}. Taking b1 = b2 = 0 in equations (7) and (8), we get T1(a1, 0)a2 = a1T1(a2, 0) for

all a1, a2 ∈ A, i.e., T1 |A×{0}∈M(A, X). Taking a1 = a2 = 0 in equations (7) and (8),

we get T1(0, b1)θ(b2) = θ(b1)T1(0, b2) and T2(0, b1)b2 = b1T2(0, b2) for all b1, b2 ∈ B,
i.e., T2 |{0}×B ∈M(B, Y ). One may observe that for all a2 ∈ A and b1, b2 ∈ B,

θ(b1)T1(a2, b2) = θ(b1)[T1(a2, 0) + T1(0, b2)]

= θ(b1)T1(a2, 0) + θ(b1)T1(0, b2)

= T1(0, b1)a2 + T1(0, b1)θ(b2).
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The converse can be verified easily. □
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