Mathematical Analysis and its Contemporary Applications Volume 4, Issue 4, 2022, 1–12 doi: 10.30495/maca.2022.1955532.1055 ISSN 2716-9898

On various properties of module Lau product of algebras

Prakash A. Dabhi¹ and Yuvraj D. Pipaliya^{2,*}

ABSTRACT. Let \mathcal{A} , \mathcal{B} , and \mathcal{X} be complex algebras, $\theta : \mathcal{B} \longrightarrow \mathcal{X}$ be an algebra homomorphism, and let \mathcal{A} be an \mathcal{X} -bimodule. We define a product on $\mathcal{A} \times \mathcal{B}$ as $(a_1, b_1)(a_2, b_2) = (a_1a_2 + a_1 \cdot \theta(b_2) + \theta(b_1) \circ a_2, b_1b_2)$ for all $(a_1, b_1), (a_2, b_2) \in \mathcal{A} \times \mathcal{B}$ and write $\mathcal{A} \times \mathcal{B}$ with this product by $\mathcal{A} \times_{\theta} \mathcal{B}$. We shall study some basic properties of $\mathcal{A} \times_{\theta} \mathcal{B}$. When \mathcal{A} , \mathcal{B} and \mathcal{X} are Banach algebras, \mathcal{A} is a Banach \mathcal{X} -bimodule, and θ is a continuous homomorphism with the norm at most 1, we determine the ideals of $\mathcal{A} \times_{\theta} \mathcal{B}$ of a certain type, the Gelfand space of this Banach algebra, and the module multipliers of this Banach algebra.

1. Introduction

Let \mathcal{A} and \mathcal{X} be complex algebras. An algebra \mathcal{A} is a *left* \mathcal{X} -module if there exists a bilinear map $(\alpha, a) \in \mathcal{X} \times \mathcal{A} \mapsto \alpha \circ a \in \mathcal{A}$ satisfying $(\alpha\beta) \circ a = \alpha \circ (\beta \circ a)$ and $\alpha \circ (ab) = (\alpha \circ a)b$ for all $\alpha, \beta \in \mathcal{X}$ and $a, b \in \mathcal{A}$. It is a *right* \mathcal{X} -module if there exists a bilinear map $(a, \alpha) \in \mathcal{A} \times \mathcal{X} \mapsto a \cdot \alpha \in \mathcal{A}$ satisfying $(ab) \cdot \alpha = a(b \cdot \alpha)$ and $a \cdot (\alpha\beta) = (a \cdot \alpha) \cdot \beta$ for all $\alpha, \beta \in \mathcal{X}$ and $a, b \in \mathcal{A}$. It is a \mathcal{X} -bimodule if it is both left \mathcal{X} -module, right \mathcal{X} -module, $\alpha \circ (a \cdot \beta) = (\alpha \circ a) \cdot \beta$ and $(a \cdot \alpha)b = a(\alpha \circ b)$ for all $\alpha, \beta \in \mathcal{X}$ and $a, b \in \mathcal{A}$. It is a *symmetric* \mathcal{X} -bimodule if it is \mathcal{X} -bimodule, $\alpha \circ a = a \cdot \alpha$ for all $a \in \mathcal{A}$ and $\alpha \in \mathcal{X}$.

Let $(\mathcal{A}, \|\cdot\|_{\mathcal{A}})$ and $(\mathcal{X}, \|\cdot\|_{\mathcal{X}})$ be normed algebras. Then \mathcal{A} is a normed left \mathcal{X} -module if it is a left \mathcal{X} -module and there exists a constant P > 0 such that $\|\alpha \circ a\|_{\mathcal{A}} \leq P \|\alpha\|_{\mathcal{X}} \|a\|_{\mathcal{A}}$ for all $\alpha \in \mathcal{X}$ and $a \in \mathcal{A}$. It is a normed right \mathcal{X} -module if it is a

^{*}Corresponding author

This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

²⁰²⁰ Mathematics Subject Classification. Primary: 46H05; Secondary: 46J20, 46H25.

Key words and phrases. Module Lau - product of Banach algebras, ideals, Gelfand space, module multipliers

right \mathcal{X} -module and there exists a constant Q > 0 such that $||a \cdot \alpha||_{\mathcal{A}} \leq Q||a||_{\mathcal{A}} ||\alpha||_{\mathcal{X}}$ for all $a \in \mathcal{A}$ and $\alpha \in \mathcal{X}$. It is a normed \mathcal{X} -bimodule if it is an \mathcal{X} -bimodule and there is R > 0 such that $||\alpha \circ a||_{\mathcal{A}} \leq R||\alpha||_{\mathcal{X}} ||a||_{\mathcal{A}}$ and $||a \cdot \alpha||_{\mathcal{A}} \leq R||a||_{\mathcal{A}} ||\alpha||_{\mathcal{X}}$ for all $a \in \mathcal{A}$ and $\alpha \in \mathcal{X}$. It is a Banach \mathcal{X} -bimodule if both \mathcal{A} and \mathcal{X} are complete as a normed linear space.

Definition 1.1. Let \mathcal{A} , \mathcal{B} , and \mathcal{X} be complex algebras, $\theta : \mathcal{B} \longrightarrow \mathcal{X}$ be an algebra homomorphism, and let \mathcal{A} be an \mathcal{X} -bimodule. We define a product on $\mathcal{A} \times \mathcal{B}$ as

$$(a_1, b_1)(a_2, b_2) = (a_1a_2 + a_1 \cdot \theta(b_2) + \theta(b_1) \circ a_2, b_1b_2)$$

for all $(a_1, b_1), (a_2, b_2) \in \mathcal{A} \times \mathcal{B}$. Then $\mathcal{A} \times \mathcal{B}$ together with co-ordinatewise linear operations and the above product is an associative algebra. We denote this algebra by $\mathcal{A} \times_{\theta} \mathcal{B}$.

If $(\mathcal{A}, \|\cdot\|_{\mathcal{A}})$, $(\mathcal{B}, \|\cdot\|_{\mathcal{B}})$, and $(\mathcal{X}, \|\cdot\|_{\mathcal{X}})$ are Banach algebras, \mathcal{A} is a Banach \mathcal{X} -bimodule and $\theta : \mathcal{B} \longrightarrow \mathcal{X}$ is an algebra homomorphism with $\|\theta\| \leq 1$, then $\mathcal{A} \times_{\theta} \mathcal{B}$ is the Banach algebra with the norm $\|(a, b)\|_1 = \|a\|_{\mathcal{A}} + \|b\|_{\mathcal{B}}$.

If we define a norm on $\mathcal{A} \times_{\theta} \mathcal{B}$ as $|(a,b)| = \max\{||a||_{\mathcal{A}} + ||\theta(b)||_{\mathcal{X}}, ||b||_{\mathcal{B}}\}$ for all $(a,b) \in \mathcal{A} \times_{\theta} \mathcal{B}$, then $(\mathcal{A} \times_{\theta} \mathcal{B}, |\cdot|)$ is also a Banach algebra. In fact, $||(a,b)||_1 \leq 2||(a,b)|| \leq 2||(a,b)||_1$ for all $(a,b) \in \mathcal{A} \times_{\theta} \mathcal{B}$. If we identify $\mathcal{A} \times \{0\}$ with \mathcal{A} and $\{0\} \times \mathcal{B}$ with \mathcal{B} in $\mathcal{A} \times_{\theta} \mathcal{B}$, then \mathcal{A} and \mathcal{B} are closed ideal and closed subalgebra of $\mathcal{A} \times_{\theta} \mathcal{B}$ respectively and the quotient $(\mathcal{A} \times_{\theta} \mathcal{B})/\mathcal{A}$ is isometrically isomorphic to \mathcal{B} , i.e., $\mathcal{A} \times_{\theta} \mathcal{B}$ is a strong splitting Banach algebra extension of \mathcal{B} by \mathcal{A} . Throughout the paper, all algebras are considered to be complex algebras.

The above multiplication on $\mathcal{A} \times \mathcal{B}$ generalizes some known multiplication on the product space $\mathcal{A} \times \mathcal{B}$. They are as follows.

(1) Let \mathcal{A} and \mathcal{B} be algebras, let $\mathcal{X} = \mathbb{C}$, and let $\theta : \mathcal{B} \to \mathbb{C}$ be a homomorphism. Then \mathcal{A} is a \mathbb{C} -bimodule with respect to the module operations defined as $a \cdot \alpha = \alpha \circ a = \alpha a$ for all $\alpha \in \mathbb{C}$ and $a \in \mathcal{A}$. It can be seen that $\mathcal{A} \times_{\theta} \mathcal{B}$ is the θ -Lau product of \mathcal{A} and \mathcal{B} .

Lau first introduced θ -Lau product in [7] for certain classes of Banach algebras. Later, it was extended and studied by Monfared for general case in [8]. Various Banach algebra properties of $\mathcal{A} \times_{\theta} \mathcal{B}$ are studied in different papers, for example, [1, 2, 4, 5, 6, 8, 9] etc.

(2) Let \mathcal{A} and \mathcal{B} be algebras, and let $\mathcal{X} = \mathcal{A}$. It is clear that \mathcal{A} is a \mathcal{A} -bimodule with respect to the module operations defined as $(a_1, a_2) \in \mathcal{A} \times \mathcal{A} \mapsto a_1 a_2 \in \mathcal{A}$ and $(a_1, a_2) \in \mathcal{A} \times \mathcal{A} \mapsto a_2 a_1 \in \mathcal{A}$ for all $a_1, a_2 \in \mathcal{A}$. Let $\theta : \mathcal{B} \longrightarrow \mathcal{A}$ be an algebra homomorphism. It can be seen that $\mathcal{A} \times_{\theta} \mathcal{B}$ is the T-Lau product of \mathcal{A} and \mathcal{B} [3]. (3) Let \mathcal{A} and \mathcal{B} be algebras, $\mathcal{B} = \mathcal{X}$, \mathcal{A} be an \mathcal{X} -bimodule, and $\theta = I$, the identity map. Then θ is an algebra homomorphism and \mathcal{A} is an algebraic \mathcal{B} -module. Then \bowtie -product in [10]. (4) Let $\mathcal{A}, \mathcal{B}, \mathcal{X}$ be algebras, and let \mathcal{A} be an \mathcal{X} -bimodule. If we define $\theta : \mathcal{B} \longrightarrow \mathcal{X}$ as $\theta(b) = 0$ for all $b \in \mathcal{B}$, then θ is an algebra homomorphism. Clearly, $\mathcal{A} \times_{\theta} \mathcal{B}$ is the Cartesian product of \mathcal{A} and \mathcal{B} .

2. Some basic properties of $\mathcal{A} \times_{\theta} \mathcal{B}$

An algebra \mathcal{A} is *commutative* if ab = ba for all $a, b \in \mathcal{A}$. An element $e \in \mathcal{A}$ is an *identity* for \mathcal{A} if ae = a = ea for all $a \in \mathcal{A}$.

Lemma 2.1. Let \mathcal{A} , \mathcal{B} , and \mathcal{X} be algebras, $\theta : \mathcal{B} \longrightarrow \mathcal{X}$ be an algebra homomorphism, and let \mathcal{A} be a symmetric \mathcal{X} -bimodule. Then the following statements hold.

- (1) $\mathcal{A} \times_{\theta} \mathcal{B}$ is commutative if and only if \mathcal{A} and \mathcal{B} are commutative.
- (2) $(0, e_{\mathcal{B}})$ is the identity for $\mathcal{A} \times_{\theta} \mathcal{B}$ if and only if $e_{\mathcal{B}}$ is the identity for \mathcal{B} and $a \cdot \theta(e_{\mathcal{B}}) = a$ for all $a \in \mathcal{A}$.

PROOF. The statement (1) is a simple verification.

(2) Let $(0, e_{\mathcal{B}})$ be the identity for $\mathcal{A} \times_{\theta} \mathcal{B}$. It follows from $(a \cdot \theta(e_{\mathcal{B}}), be_{\mathcal{B}}) = (a, b)(0, e_{\mathcal{B}}) = (a, b) = (0, e_{\mathcal{B}})(a, b) = (\theta(e_{\mathcal{B}}) \circ a, e_{\mathcal{B}}b)$ that $a \cdot \theta(e_{\mathcal{B}}) = a = \theta(e_{\mathcal{B}}) \circ a$ and $be_{\mathcal{B}} = b = e_{\mathcal{B}}b$ for all $a \in \mathcal{A}$ and $b \in \mathcal{B}$.

Conversely, let $e_{\mathcal{B}}$ be the identity for \mathcal{B} and $a \cdot \theta(e_{\mathcal{B}}) = a$ for all $a \in \mathcal{A}$. Since \mathcal{A} is a symmetric \mathcal{X} -bimodule, $(a, b)(0, e_{\mathcal{B}}) = (a \cdot \theta(e_{\mathcal{B}}), be_{\mathcal{B}}) = (a, b)$ and $(0, e_{\mathcal{B}})(a, b) = (\theta(e_{\mathcal{B}}) \circ a, e_{\mathcal{B}}b) = (a, b)$ for all $(a, b) \in \mathcal{A} \times_{\theta} \mathcal{B}$.

A net $\{e_{\alpha}\}_{\alpha \in \Lambda}$ of elements of \mathcal{A} is a bounded left approximate identity for a normed algebra $(\mathcal{A}, \|\cdot\|_{\mathcal{A}})$ if there exists some M > 0 such that $\|e_{\alpha}\|_{\mathcal{A}} \leq M$ for all $\alpha \in \Lambda$ and $\|e_{\alpha}a - a\|_{\mathcal{A}} \to 0$ for all $a \in \mathcal{A}$. Similarly, a bounded right approximate identity and a bounded (two sided) approximate identity are defined.

Proposition 2.2. Let $(\mathcal{A}, \|\cdot\|_{\mathcal{A}})$, $(\mathcal{B}, \|\cdot\|_{\mathcal{B}})$, and $(\mathcal{X}, \|\cdot\|_{\mathcal{X}})$ be normed algebras, $\theta : \mathcal{B} \longrightarrow \mathcal{X}$ be an algebra homomorphism with $\|\theta\| \leq 1$, and let \mathcal{A} be a normed \mathcal{X} -bimodule. Then $\{(e_{\alpha}, f_{\alpha})\}_{\alpha \in \Lambda}$ is a bounded left (right, or two sided) approximate identity for $\mathcal{A} \times_{\theta} \mathcal{B}$ if and only if $\{f_{\alpha}\}_{\alpha \in \Lambda}$ is a bounded left (right, or two sided) approximate identity for \mathcal{B} , $\{e_{\alpha}\}_{\alpha \in \Lambda}$ is bounded, $\|e_{\alpha}a + \theta(f_{\alpha}) \circ a - a\|_{\mathcal{A}} \to 0$, and $\|e_{\alpha} \cdot \theta(b)\|_{\mathcal{A}} \to 0$.

PROOF. Let $\{(e_{\alpha}, f_{\alpha})\}_{\alpha \in \Lambda}$ be a bounded left approximate identity for $\mathcal{A} \times_{\theta} \mathcal{B}$. Then there exists some M > 0 such that $|(e_{\alpha}, f_{\alpha})| \leq M$ for all $\alpha \in \Lambda$ and $|(e_{\alpha}, f_{\alpha})(a, b) - (a, b)| \to 0$ for all $(a, b) \in \mathcal{A} \times_{\theta} \mathcal{B}$. By definition of $|\cdot|$, the nets $\{e_{\alpha}\}_{\alpha \in \Lambda} \text{ and } \{f_{\alpha}\}_{\alpha \in \Lambda} \text{ are bounded. If } b \in \mathcal{B},$ $\max\{\|e_{\alpha} \cdot \theta(b)\|_{\mathcal{A}}, \|f_{\alpha}b - b\|_{\mathcal{B}}\} \leq \max\{\|e_{\alpha} \cdot \theta(b)\|_{\mathcal{A}} + \|\theta(f_{\alpha}b - b)\|_{\mathcal{X}}, \|f_{\alpha}b - b\|_{\mathcal{B}}\} \\ = \|(e_{\alpha} \cdot \theta(b), f_{\alpha}b - b)\| = \|(e_{\alpha}, f_{\alpha})(0, b) - (0, b)\|.$

If $a \in \mathcal{A}$,

$$||e_{\alpha}a + \theta(f_{\alpha}) \circ a - a||_{\mathcal{A}} = \max \{ ||e_{\alpha}a + \theta(f_{\alpha}) \circ a - a||_{\mathcal{A}} + ||0||_{\mathcal{X}}, ||0||_{\mathcal{B}} \}$$

= $|(e_{\alpha}a + \theta(f_{\alpha}) \circ a - a, 0)| = |(e_{\alpha}, f_{\alpha})(a, 0) - (a, 0)|.$

So, $||f_{\alpha}b - b||_{\mathcal{B}} \to 0$, $||e_{\alpha} \cdot \theta(b)||_{\mathcal{A}} \to 0$, and $||e_{\alpha}a + \theta(f_{\alpha}) \circ a - a||_{\mathcal{A}} \to 0$. Assume the converse. Let $(a, b) \in \mathcal{A} \times_{\theta} \mathcal{B}$. Then

$$|(e_{\alpha}, f_{\alpha})(a, b) - (a, b)|$$

$$= \max\{\|e_{\alpha}a + e_{\alpha} \cdot \theta(b) + \theta(f_{\alpha}) \circ a - a\|_{\mathcal{A}} + \|\theta(f_{\alpha}b - b)\|_{\mathcal{X}}, \|f_{\alpha}b - b\|_{\mathcal{B}}\}$$

$$\leq \max\{\|e_{\alpha}a + \theta(f_{\alpha}) \circ a - a\|_{\mathcal{A}} + \|e_{\alpha} \cdot \theta(b)\|_{\mathcal{A}} + \|\theta(f_{\alpha}b - b)\|_{\mathcal{X}}, \|f_{\alpha}b - b\|_{\mathcal{B}}\}.$$

It follows from the fact $\|\theta\| \leq 1$ and our assumptions that $\{(e_{\alpha}, f_{\alpha})\}_{\alpha \in \Lambda}$ is a bounded left approximate identity for $\mathcal{A} \times_{\theta} \mathcal{B}$.

An element $a \in \mathcal{A}$ is an *idempotent* if $a^2 = a$ and a non-zero idempotent a is a *minimal idempotent* if $a\mathcal{A}a$ is a division algebra or $a\mathcal{A}a = \mathbb{C}a$. Let \mathcal{A}, \mathcal{B} , and \mathcal{X} be algebras, $\theta : \mathcal{B} \longrightarrow \mathcal{X}$ be an algebra homomorphism. It is clear that $(a, b) \in \mathcal{A} \times_{\theta} \mathcal{B}$ is an idempotent if and only if $b \in \mathcal{B}$ is an idempotent and $a^2 + a \cdot \theta(b) + \theta(b) \circ a = a$.

Proposition 2.3. Let \mathcal{A} , \mathcal{B} , and \mathcal{X} be algebras, $\theta : \mathcal{B} \longrightarrow \mathcal{X}$ be an injective algebra homomorphism. Then (a, b) is a minimal idempotent in $\mathcal{A} \times_{\theta} \mathcal{B}$ if and only if $(a, \theta(b))$ is a minimal idempotent in $\mathcal{A} \bowtie \theta(\mathcal{B})$ and b is a minimal idempotent in \mathcal{B} provided $b \neq 0$.

PROOF. Let $(a, b) \in \mathcal{A} \times_{\theta} \mathcal{B}$ be a minimal idempotent, i.e., $(a, b)^2 = (a, b)$ and $(a, b)(\mathcal{A} \times_{\theta} \mathcal{B})(a, b) = \mathbb{C}(a, b)$ or $(a, b)^2 = (a, b)$ and given $(a_0, b_0) \in \mathcal{A} \times_{\theta} \mathcal{B}$, there exists some $\lambda_{(a_0, b_0)} \in \mathbb{C}$ such that $(a, b)(a_0, b_0)(a, b) = \lambda_{(a_0, b_0)}(a, b)$. So,

$$a^{2} + a \cdot \theta(b) + \theta(b) \circ a = a, \tag{1}$$

$$b^2 = b \quad \text{and} \tag{2}$$

$$aa_0a + (a \cdot \theta(b_0))a + (\theta(b) \circ a_0)a + aa_0 \cdot \theta(b) + (a \cdot \theta(b_0)) \cdot \theta(b) + (\theta(b) \circ a_0) \cdot \theta(b) + \theta(bb_0) \circ a = \lambda_{(a_0,b_0)}a,$$
(3)

$$bb_0 b = \lambda_{(a_0, b_0)} b. \tag{4}$$

It follows from equations (2) and (4) that if $b \neq 0$, then b is a minimal idempotent with $\lambda_{(a_0,b_0)} = \lambda_{(0,b_0)}$ for all $a_0 \in \mathcal{A}$ and it follows from above four equations that $(a, \theta(b))^2 = (a, \theta(b))$ and $(a, \theta(b))(a_0, \theta(b_0))(a, \theta(b)) = \lambda_{(a_0,b_0)}(a, \theta(b))$ for all $(a_0, b_0) \in \mathcal{A} \times_{\theta} \mathcal{B}$. Conversely, let $b \in \mathcal{B}$ be a minimal idempotent, i.e., $b^2 = b$ and for given $b_1 \in \mathcal{B}$, there exists some $\lambda_{b_1} \in \mathbb{C}$ such that $bb_1b = \lambda_{b_1}b$. This gives $\theta(bb_1b) = \theta(\lambda_{b_1}b)$. Since $(a, \theta(b)) \in \mathcal{A} \bowtie \theta(\mathcal{B})$ is a minimal idempotent, i.e., $(a, \theta(b))^2 = (a, \theta(b))$ and for given $(a_0, \theta(b_0)) \in \mathcal{A} \bowtie \theta(\mathcal{B})$, there exists some $\lambda_{(a_0, \theta(b_0))} \in \mathbb{C}$ such that $(a, \theta(b))(a_0, \theta(b_0))(a, \theta(b)) = \lambda_{(a_0, \theta(b_0))}(a, \theta(b))$. So, $(a, \theta(b))(a_0, \theta(b_1))(a, \theta(b)) = \lambda_{(a_0, \theta(b_1))}(a, \theta(b))$. It follows from injectivity of θ that $\lambda_{(a_0, \theta(b_1))} = \lambda_{b_1}$. The case b = 0 is easy to verify.

The following example show that the condition that θ is injective in the Proposition 2.3 is necessary.

Example 2.1. We consider the semigroup \mathbb{N} with the gcd binary operation and we denote \mathbb{N} with this binary operation by \mathbb{N}_{gcd} . The semigroup algebra

$$\ell^1(\mathbb{N}) = \{f: \mathbb{N} \to \mathbb{C} : \|f\| = \sum_{n \in \mathbb{N}} |f(n)| < \infty\}$$

is a commutative Banach algebra with the above norm and the convolution multiplication

$$(f\star g)(n) = \sum_{\gcd(u,v)=n} f(u)g(v) \quad (f,g\in \ell^1(\mathbb{N}_{\mathrm{gcd}}),n\in\mathbb{N}).$$

We write an element f of $\ell^1(\mathbb{N}_{gcd})$ by $f = \sum_{n \in \mathbb{N}} f(n)\delta_n$, where $\delta_n : \mathbb{N} \to \mathbb{C}$ is defined by $\delta_n(n) = 1$ and $\delta_n(m) = 0$ if $m \neq n$. Take $\mathcal{A} = \mathcal{B} = \ell^1(\mathbb{N}_{gcd})$ and define $\theta : \mathcal{B} \to \mathbb{C}$ by $\theta(f) = \sum_{n \in \mathbb{N}} f(2n)$ for all $f \in \mathcal{B}$. Then θ is a complex homomorphism on \mathcal{B} and θ is not injective. Note that $\delta_1 \star \delta_m = \delta_{gcd(1,m)} = \delta_1$ for all $m \in \mathbb{N}$. So, if $f = \sum_{n \in \mathbb{N}} f(n)\delta_n \in \ell^1(\mathbb{N})$, then $\delta_1 \star f = \sum_{n \in \mathbb{N}} f(n)\delta_1 = (\sum_{n \in \mathbb{N}} f(n)) \delta_1$. Clearly, $\delta_1 \star \delta_1 = \delta_1$ and $\delta_1 \star f \star \delta_1 = (\sum_{n \in \mathbb{N}} f(n)) \delta_1$, i.e., δ_1 is a minimal idempotent in \mathcal{B} . We now show that $(\delta_1, \theta(\delta_1)) = (\delta_1, 0)$ is a minimal idempotent in $\mathcal{A} \bowtie \theta(\mathcal{B})$. First observe that $(\delta_1, 0)(\delta_1, 0) = (\delta_1, 0)$. Let $(f, \theta(g))$ be in $\mathcal{A} \bowtie \theta(\mathcal{B})$. Then

$$\begin{aligned} (\delta_1, 0)(f, \theta(g))(\delta_1, 0) &= (\delta_1 \star f + \theta(g)\delta_1, 0)(\delta_1, 0) \\ &= \left(\left(\sum_{n \in \mathbb{N}} f(n) + \theta(g)\right)\delta_1, 0\right)(\delta_1, 0) \\ &= \left(\left(\sum_{n \in \mathbb{N}} f(n) + \theta(g)\right)\delta_1, 0\right) \\ &= \left(\sum_{n \in \mathbb{N}} f(n) + \theta(g)\right)(\delta_1, 0). \end{aligned}$$

Therefore $(\delta_1, \theta(\delta_1))$ is a minimal idempotent in $\mathcal{A} \Join \theta(\mathcal{B})$. We now show that (δ_1, δ_1) is not a minimal idempotent in $\mathcal{A} \times_{\theta} \mathcal{B}$. Notice that

$$\begin{aligned} (\delta_1, \delta_1)(\delta_2, \delta_2)(\delta_1, \delta_1) &= (\delta_1 \star \delta_2 + \theta(\delta_2)\delta_1 + \theta(\delta_1)\delta_2, \delta_1)(\delta_1, \delta_1) \\ &= (\delta_1 + \delta_1, \delta_1)(\delta_1, \delta_1) \\ &= (2\delta_1, \delta_1), \end{aligned}$$

and $(2\delta_1, \delta_1) \neq \lambda(\delta_1, \delta_1)$ for any $\lambda \in \mathbb{C}$. Therefore (δ_1, δ_1) is not a minimal idempotent in $\mathcal{A} \times_{\theta} \mathcal{B}$.

2.1. Ideals of the type $I \times J$ in $\mathcal{A} \times_{\theta} \mathcal{B}$. A subset I of \mathcal{A} is a *left ideal* in \mathcal{A} if I is a linear subspace of \mathcal{A} and $aI \subseteq I$ for all $a \in \mathcal{A}$. Similarly, a *right ideal* and an *ideal* are defined. A left ideal I is a *modular left ideal in* \mathcal{A} with modular unit u if there exists $u \in \mathcal{A}$ such that $au - a \in I$ for all $a \in \mathcal{A}$. Similarly, a *modular right ideal* and a *modular ideal* are defined. An ideal I is proper if $I \neq \mathcal{A}$. A proper left ideal I is maximal if J = I or $J = \mathcal{A}$ whenever J is a left ideal in \mathcal{A} containing I. An ideal I is a prime ideal if $a \in I$ or $b \in I$ whenever $a, b \in \mathcal{A}$ and $ab \in I$.

Proposition 2.4. Let K be a left ideal in a Banach algebra $\mathcal{A} \times_{\theta} \mathcal{B}$. Define two sets $I = \{a \in \mathcal{A} : (a, b) \in K \text{ for some } b \in \mathcal{B}\}$ and $J = \{b \in \mathcal{B} : (a, b) \in K \text{ for some } a \in \mathcal{A}\}$. Then the following statements hold.

- (1) J is a left ideal in \mathcal{B} .
- (2) If θ vanishes on J, then I is a left ideal in \mathcal{A} . If in addition \mathcal{A} has a left approximate identity and K is closed in $\mathcal{A} \times_{\theta} \mathcal{B}$, then $K = I \times J$.
- (3) If θ does not vanish on J and $\mathcal{A} \cdot \theta(J) \subseteq I$, then I is a left ideal in \mathcal{A}

PROOF. (1) Let $b \in J$. Then there exists some $a \in \mathcal{A}$ such that $(a, b) \in K$. Let $b_1 \in \mathcal{B}$. Then $(\theta(b_1) \circ a, b_1b) = (0, b_1)(a, b) \in K$, i.e., we get an element $\theta(b_1) \circ a \in \mathcal{A}$ such that $(\theta(b_1) \circ a, b_1b) \in K$. Hence $b_1b \in J$.

(2) Let θ vanish on J and $a \in I$. Then there exists some $b \in \mathcal{B}$ such that $(a,b) \in K$. Since $a \in I \subseteq \mathcal{A}$, by definition of J, we have $b \in J$. Let $a_1 \in \mathcal{A}$. Then $(a_1a,0) = (a_1a + a_1 \cdot \theta(b), 0) = (a_1,0)(a,b) \in K$, i.e., we get an element $0 \in \mathcal{B}$ such that $(a_1a,0) \in K$. Therefore, $a_1a \in I$.

Let $\{a_{\alpha}\}_{\alpha \in \Lambda}$ be a left approximate identity for \mathcal{A} and K be closed in $\mathcal{A} \times_{\theta} \mathcal{B}$. By definitions of I and J, $K \subseteq I \times J$. Now, let $p \in I$ and $q \in J$. We show that $(p,q) \in K$. Since $p \in I$ and $q \in J$, there exist $b \in \mathcal{B}$ and $a \in \mathcal{A}$ such that $(p,b) \in K$ and $(a,q) \in K$. Then $(a_{\alpha}a,0) = (a_{\alpha}a + a_{\alpha} \cdot \theta(q), 0) = (a_{\alpha},0)(a,q) \in K$ and $|(a_{\alpha}a,0) - (a,0)| = ||a_{\alpha}a - a||_{\mathcal{A}} \to 0$. Since K is closed in $\mathcal{A} \times_{\theta} \mathcal{B}$, $(a,0) \in K$. Similarly, we can show that $(p,0) \in K$. So, $(0,q) = (a,q) - (a,0) \in K$. Hence $(p,q) = (p,0) + (0,q) \in K$.

(3) It follows from the proof of (2).

Lemma 2.5. Let I and J be two non-empty subsets of \mathcal{A} and \mathcal{B} respectively. Then $I \times J$ is a left ideal in $\mathcal{A} \times_{\theta} \mathcal{B}$ if and only if I is a left ideal in \mathcal{A} , J is a left ideal in \mathcal{B} , $\mathcal{A} \cdot \theta(J) \subseteq I$ and $\theta(\mathcal{B}) \circ I \subseteq I$.

PROOF. Let $I \times J$ be a left ideal in $\mathcal{A} \times_{\theta} \mathcal{B}$. Then for all $(a, b) \in \mathcal{A} \times_{\theta} \mathcal{B}$ and $(i, j) \in I \times J, (ai + a \cdot \theta(j) + \theta(b) \circ i, bj) = (a, b)(i, j) \in I \times J$ or $ai + a \cdot \theta(j) + \theta(b) \circ i \in I$ and $bj \in J$. So, J is a left ideal in \mathcal{B} and $ai + a \cdot \theta(j) + \theta(b) \circ i \in I$. In particular, taking a = 0, we get $\theta(b) \circ i \in I$, i.e., $\theta(\mathcal{B}) \circ I \subseteq I$ and taking i = 0 and j = 0respectively, we get $a \cdot \theta(j) \in I$, i.e., $\mathcal{A} \cdot \theta(J) \subseteq I$ and $ai + \theta(b) \circ i \in I$ and so $ai = (ai + \theta(b) \circ i) - (\theta(b) \circ i) \in I$.

Assume the converse. Let $(a, b) \in \mathcal{A} \times_{\theta} \mathcal{B}$ and $(i, j) \in I \times J$. Then $(a, b)(i, j) = (ai + a \cdot \theta(j) + \theta(b) \circ i, bj) \in I \times J$ by our assumption. \Box

Let \mathcal{A} be an \mathcal{X} -bimodule. A left ideal I is a modular left \mathcal{X} -ideal in \mathcal{A} with modular \mathcal{X} -unit x if there exists $x \in \mathcal{X}$ such that $ax - a \in I$ for all $a \in \mathcal{A}$. Similarly, a modular right \mathcal{X} -ideal and a modular \mathcal{X} -ideal are defined.

Proposition 2.6. Let *I* be a left ideal in \mathcal{A} and *J* be a left ideal in \mathcal{B} . Then $I \times J$ is a modular left ideal in $\mathcal{A} \times_{\theta} \mathcal{B}$ with modular unit (i, j) if and only if *I* is a modular left \mathcal{X} -ideal in \mathcal{A} with modular \mathcal{X} -unit $\theta(j)$, *J* is a modular left ideal in \mathcal{B} with modular unit j, $\mathcal{A} \cdot \theta(J) \subseteq I$ and $\theta(\mathcal{B}) \circ I \subseteq I$.

PROOF. Let $I \times J$ be a modular left ideal in $\mathcal{A} \times_{\theta} \mathcal{B}$ with modular unit (i, j). Then for all $(a, b) \in \mathcal{A} \times_{\theta} \mathcal{B}$, $(a, b)(i, j) - (a, b) \in I \times J$ or $ai + a \cdot \theta(j) + \theta(b) \circ i - a \in I$ I and $bj - b \in J$. So, J is a modular left ideal in \mathcal{B} with modular unit j and $ai + a \cdot \theta(j) + \theta(b) \circ i - a \in I$. By Lemma 2.5, I is a left ideal in \mathcal{A} , J is a left ideal in \mathcal{B} , and $\mathcal{A} \cdot \theta(J) \subseteq I$, $\theta(\mathcal{B}) \circ I \subseteq I$. Since I is a left ideal in \mathcal{A} , $ai \in I$ and so $a \cdot \theta(j) + \theta(b) \circ i - a \in I$ for all $a \in \mathcal{A}$ and $b \in \mathcal{B}$. In particular, taking b = 0, we get $a \cdot \theta(j) - a \in I$ for all $a \in \mathcal{A}$. So, I is a modular left \mathcal{X} -ideal in \mathcal{A} with modular \mathcal{X} -unit $\theta(j)$.

Assume the converse. Let $(a, b) \in \mathcal{A} \times_{\theta} \mathcal{B}$ and $(i, j) \in I \times J$. Then $(a, b)(i, j) - (a, b) = (ai + a \cdot \theta(j) + \theta(b) \circ i - a, bj - b) \in I \times J$ by our assumptions. \Box

Lemma 2.7. Let K be a left ideal in $\mathcal{A} \times_{\theta} \mathcal{B}$ containing $\{0\} \times \mathcal{B}$. Then there is a left ideal I in \mathcal{A} such that $K = I \times \mathcal{B}$. If K is a left ideal in $\mathcal{A} \times_{\theta} \mathcal{B}$ containing $\mathcal{A} \times \{0\}$, then there is a left ideal J in \mathcal{B} such that $K = \mathcal{A} \times J$.

PROOF. Let K be a left ideal in $\mathcal{A} \times_{\theta} \mathcal{B}$ containing $\{0\} \times \mathcal{B}$. Let $I = \{a \in \mathcal{A} : (a, b) \in K \text{ for some } b \in \mathcal{B}\}$. It is enough to prove that I is a left ideal in \mathcal{A} . For that, let $i \in I$. Then there exists $b \in \mathcal{B}$ such that $(i, b) \in K$. Since $(0, b) \in \{0\} \times \mathcal{B} \subseteq K$, $(i, 0) \in K$. Let $a \in \mathcal{A}$. Then $(ai, 0) = (a, 0)(i, 0) \in K$. Therefore I is a left ideal in \mathcal{A} .

One can prove the second statement in a similar way.

Proposition 2.8. Let I and J be left ideals of \mathcal{A} and \mathcal{B} respectively. Then the following statements hold.

- (1) $I \times \mathcal{B}$ is a maximal left ideal in $\mathcal{A} \times_{\theta} \mathcal{B}$ if and only if I is a maximal left ideal in $\mathcal{A}, \mathcal{A} \cdot \theta(\mathcal{B}) \subseteq I$ and $\theta(\mathcal{B}) \circ I \subseteq I$.
- (2) $\mathcal{A} \times J$ is a maximal left ideal in $\mathcal{A} \times_{\theta} \mathcal{B}$ if and only if J is a maximal left ideal in \mathcal{B} .
- (3) $I \times J$ is a maximal left ideal in $\mathcal{A} \times_{\theta} \mathcal{B}$ if and only if either $I = \mathcal{A}$ with J is a maximal left ideal in \mathcal{B} or $J = \mathcal{B}$ with I is a maximal left ideal in \mathcal{A} , $\mathcal{A} \cdot \theta(J) \subseteq I$ and $\theta(\mathcal{B}) \circ I \subseteq I$.

PROOF. It follows from Lemma 2.5 and Lemma 2.7.

Proposition 2.9. Let \mathcal{A} be a symmetric \mathcal{X} -bimodule, I be an ideal in \mathcal{A} , and J be an ideal in \mathcal{B} . Then $I \times J$ is a prime ideal in $\mathcal{A} \times_{\theta} \mathcal{B}$ if and only if I is a prime ideal in \mathcal{A} , J is a prime ideal in \mathcal{B} , $\mathcal{A} \cdot \theta(J) \subseteq I$ and $\theta(\mathcal{B}) \circ I \subseteq I$.

PROOF. Let $I \times J$ be a prime ideal in $\mathcal{A} \times_{\theta} \mathcal{B}$. It follows from Lemma 2.5 that I is a left ideal in \mathcal{A} , J is a left ideal in \mathcal{B} , $\mathcal{A} \cdot \theta(J) \subseteq I$ and $\theta(\mathcal{B}) \circ I \subseteq I$. Let $a_1, a_2 \in \mathcal{A}$ be such that $a_1a_2 \in I$. Then $(a_1, 0)(a_2, 0) = (a_1a_2, 0) \in I \times J$. It follows that $a_1 \in I$ or $a_2 \in I$, i.e., I is a prime ideal in \mathcal{A} . Similarly, J is a prime ideal in \mathcal{B} .

Assume the converse. By Lemma 2.5, $I \times J$ is an ideal in $\mathcal{A} \times_{\theta} \mathcal{B}$. Let $(a_1, b_1), (a_2, b_2) \in \mathcal{A} \times_{\theta} \mathcal{B}$ be such that $(a_1, b_1)(a_2, b_2) \in I \times J$ or $a_1a_2 + a_1 \cdot \theta(b_2) + \theta(b_1) \circ a_2 \in I$ and $b_1b_2 \in J$. Since J is a prime ideal in \mathcal{B} , either $b_1 \in J$ or $b_2 \in J$. We are in a situation of two cases.

Case I: Let $b_1 \in J$. Since \mathcal{A} is a symmetric \mathcal{X} -bimodule, $\theta(J) \circ \mathcal{A} = \mathcal{A} \cdot \theta(J) \subseteq I$. So, $\theta(b_1) \circ a_2 = a_2 \cdot \theta(b_1) \in I$. Therefore, $a_1a_2 + a_1 \cdot \theta(b_2) \in I$. This implies that $(a_1, 0)(a_2, b_2) = (a_1a_2 + a_1 \cdot \theta(b_2), 0) \in I \times \{0\}$. It is clear that I is a prime ideal in \mathcal{A} if and only if $I \times \{0\}$ is a prime ideal in $\mathcal{A} \times \{0\}$. So, we get either $(a_1, 0) \in I \times \{0\}$ or $(a_2, b_2) \in I \times \{0\}$. If $(a_1, 0) \in I \times \{0\}$ then $a_1 \in I$ and so $(a_1, b_1) \in I \times J$. If $(a_2, b_2) \in I \times \{0\}$ then $a_2 \in \mathcal{I}$ and $b_2 = 0 \in \{0\} \subseteq J$. So, $(a_2, b_2) \in I \times J$.

Case II: Let $b_2 \in J$. Then $a_1 \cdot \theta(b_2) \in I$ and so $a_1a_2 + \theta(b_1) \circ a_2 \in I$. This implies that $(a_1, b_1)(a_2, 0) = (a_1a_2 + \theta(b_1) \circ a_2, 0) \in I \times \{0\}$. It follows from the above same argument that either $(a_1, b_1) \in I \times J$ or $(a_2, b_2) \in I \times J$.

2.2. Gelfand space of $\mathcal{A} \times_{\theta} \mathcal{B}$. Let \mathcal{A} be a commutative Banach algebra and \mathcal{A}^* be the dual of \mathcal{A} . A nonzero linear map $\varphi : \mathcal{A} \to \mathbb{C}$ is a *complex homomorphism* if $\varphi(ab) = \varphi(a)\varphi(b)$ for all $a, b \in \mathcal{A}$. Let $\Delta(\mathcal{A})$ be the set of all complex homomorphism on \mathcal{A} . Clearly, $\Delta(\mathcal{A}) \subseteq \mathcal{A}^*$. For $a \in \mathcal{A}$, let $\hat{a} : \Delta(\mathcal{A}) \to \mathbb{C}$ be $\hat{a}(\varphi) = \varphi(a)$ for all $\varphi \in \Delta(\mathcal{A})$. The weakest topology on $\Delta(\mathcal{A})$ in which all $\hat{a}, a \in \mathcal{A}$, are continuous is the *Gelfand topology* on $\Delta(\mathcal{A})$. The set $\Delta(\mathcal{A})$ with the Gelfand topology is the *Gelfand space* of \mathcal{A} . Note that if $a \in \mathcal{A}$, then $\hat{a} \in C_0(\Delta(\mathcal{A}))$, where $C_0(\Delta(\mathcal{A}))$ is the collection of all continuous functions on $\Delta(\mathcal{A})$ vanishing at infinity. The map

 $a \in \mathcal{A} \mapsto \hat{a} \in C_0(\Delta(\mathcal{A}))$ is the *Gelfand map*. A commutative Banach algebra \mathcal{A} is semisimple if the Gelfand map is injective.

Next theorem gives the Gelfand space of $\mathcal{A} \times_{\theta} \mathcal{B}$.

Theorem 2.10. Let \mathcal{A} , \mathcal{B} , and \mathcal{X} be commutative Banach algebras, \mathcal{A} be a symmetric Banach \mathcal{X} -bimodule, and $\theta : \mathcal{B} \longrightarrow \mathcal{X}$ be an algebra homomorphism with $\|\theta\| \leq 1$. Then the Gelfand space $\Delta(\mathcal{A} \times_{\theta} \mathcal{B})$ of $\mathcal{A} \times_{\theta} \mathcal{B}$ is a disjoint union of the sets $E := \{(\varphi, \varphi(a_{\varphi} \cdot \theta(\cdot))) : \varphi \in \Delta(\mathcal{A}), a_{\varphi} \in \mathcal{A} \text{ such that } \varphi(a_{\varphi}) = 1\}$ and $F := \{(0, \psi) : \psi \in \Delta(\mathcal{B})\}.$

PROOF. Let $\Phi \in \Delta(\mathcal{A} \times_{\theta} \mathcal{B})$. Since $\Delta(\mathcal{A} \times_{\theta} \mathcal{B}) \subseteq (\mathcal{A} \times_{\theta} \mathcal{B})^{*}$, there exist $\varphi \in \mathcal{A}^{*}$ and $\psi \in \mathcal{B}^{*}$ such that $\Phi = (\varphi, \psi)$. Let $(a_{1}, b_{1}), (a_{2}, b_{2}) \in \mathcal{A} \times_{\theta} \mathcal{B}$. Then $(\varphi, \psi)[(a_{1}, b_{1})(a_{2}, b_{2})] = (\varphi, \psi)(a_{1}, b_{1})(\varphi, \psi)(a_{2}, b_{2})$ or $(\varphi, \psi)(a_{1}a_{2} + a_{1} \cdot \theta(b_{2}) + \theta(b_{1}) \circ a_{2}, b_{1}b_{2}) = (\varphi(a_{1}) + \psi(b_{1}))(\varphi(a_{2}) + \psi(b_{2}))$ or

$$\varphi(a_1a_2 + a_1 \cdot \theta(b_2) + \theta(b_1) \circ a_2) + \psi(b_1b_2) = \varphi(a_1)\varphi(a_2) + \varphi(a_1)\psi(b_2) + \psi(b_1)\varphi(a_2) + \psi(b_1)\psi(b_2).$$
(5)

In particular, taking $b_1 = b_2 = 0$ and $a_1 = a_2 = 0$ in equation (5) respectively, we get $\varphi(a_1a_2) = \varphi(a_1)\varphi(a_2)$ and $\psi(b_1b_2) = \psi(b_1)\psi(b_2)$. The equation (5) gives

$$\varphi(a_1 \cdot \theta(b_2)) + \varphi(\theta(b_1) \circ a_2) = \varphi(a_1)\psi(b_2) + \psi(b_1)\varphi(a_2)$$
(6)

for all $(a_1, b_1), (a_2, b_2) \in \mathcal{A} \times_{\theta} \mathcal{B}$. Let $\varphi \neq 0$. Then there exists $a_{\varphi} \in \mathcal{A}$ such that $\varphi(a_{\varphi}) = 1$. Taking $a_1 = a_2 = a_{\varphi}$ and $b_1 = b_2 = b$ in equation (6), we get $\varphi(a_{\varphi} \cdot \theta(b)) = \varphi(a_{\varphi})\psi(b)$. Therefore, $\psi(\cdot) = \varphi(a_{\varphi} \cdot \theta(\cdot))$. One can observe that $\psi(\cdot)$ is independent of the choice of a_{φ} satisfying $\varphi(a_{\varphi}) = 1$. Indeed, let $a_1, a_2 \in \mathcal{A}$ such that $\varphi(a_1) = 1 = \varphi(a_2)$. Since \mathcal{A} is a symmetric \mathcal{X} -bimodule, we have $(a_1 \cdot \theta(\cdot))a_2 = a_1(\theta(\cdot) \circ a_2)$ and so $\varphi((a_1 \cdot \theta(\cdot))a_2) = \varphi(a_1(\theta(\cdot) \circ a_2))$ or $\varphi(a_1 \cdot \theta(\cdot))\varphi(a_2) = \varphi(a_1)\varphi(\theta(\cdot) \circ a_2)$ or $\varphi(a_1 \cdot \theta(\cdot)) = \varphi(\theta(\cdot) \circ a_2)$ for all $\varphi \in \Delta(\mathcal{A})$. Therefore, the map $\varphi(a_{\varphi} \cdot \theta(\cdot))$ is well-defined. Since $\varphi(a_{\varphi}) = 1$ and \mathcal{A} is symmetric, the map $\varphi(a_{\varphi} \cdot \theta(\cdot))$ is multiplicative. Indeed,

$$\begin{aligned} \varphi(a_{\varphi} \cdot \theta(b_1 b_2)) &= \varphi(a_{\varphi} \cdot (\theta(b_1)\theta(b_2))) = \varphi(a_{\varphi} \cdot (\theta(b_1)\theta(b_2)))\varphi(a_{\varphi}) \\ &= \varphi((a_{\varphi} \cdot (\theta(b_1)\theta(b_2)))a_{\varphi}) = \varphi([(a_{\varphi} \cdot \theta(b_1)) \cdot \theta(b_2)]a_{\varphi}) \\ &= \varphi([a_{\varphi} \cdot \theta(b_1)][\theta(b_2) \circ a_{\varphi}]) = \varphi(a_{\varphi} \cdot \theta(b_1))\varphi(\theta(b_2) \circ a_{\varphi}) \\ &= \varphi(a_{\varphi} \cdot \theta(b_1))\varphi(a_{\varphi} \cdot \theta(b_2)) \end{aligned}$$

for all $b_1, b_2 \in \mathcal{B}$. Therefore, $(\varphi, \psi) \in E$. Next, let $\varphi = 0$. Then $\psi \in \Delta(\mathcal{B})$ and $(0, \psi) \in F$. Hence $\Delta(\mathcal{A} \times_{\theta} \mathcal{B}) \subseteq E \cup F$.

Conversely, let $\Phi \in E \cup F$. Then computation shows that $\Phi \in \Delta(\mathcal{A} \times_{\theta} \mathcal{B})$. \Box

Corollary 2.11. Assume the hypothesis of Theorem 2.10. Then sets E and F are open and closed in $\Delta(\mathcal{A} \times_{\theta} \mathcal{B})$ respectively.

PROOF. Let $(\varphi, \varphi(\theta(\cdot) \circ a_{\varphi})) \in E$. Since $\varphi \in \Delta(\mathcal{A})$, there exists $a_0 \in \mathcal{A}$ such that $\varphi(a_0) \neq 0$. Take $\varepsilon = \frac{|\varphi(a_0)|}{4}$ and $U = U((\varphi, \varphi(\theta(\cdot) \circ a_{\varphi})), (a_0, 0), \varepsilon)$. Then U is a neighborhood of $(\varphi, \varphi(\theta(\cdot) \circ a_{\varphi}))$ and

$$U = \{ (\varphi_1, \psi_1) \in \Delta(\mathcal{A} \times_{\theta} \mathcal{B}) : |(\varphi_1, \psi_1)((a_0, 0)) - (\varphi, \varphi(\theta(\cdot) \circ a_{\varphi}))((a_0, 0))| < \varepsilon \}$$

= $\{ (\varphi_1, \psi_1) \in \Delta(\mathcal{A} \times_{\theta} \mathcal{B}) : |\varphi_1(a_0) - \varphi(a_0)| < \varepsilon \}.$

If we take any point $(0, \psi) \in U$, then $4\varepsilon = |\varphi(a_0)| < \varepsilon$, a contradiction. Therefore, $U \subset E$. Hence E is open in $\Delta(\mathcal{A} \times_{\theta} \mathcal{B})$ and so F is closed in $\Delta(\mathcal{A} \times_{\theta} \mathcal{B})$. \Box

Corollary 2.12. Assume the hypothesis of Theorem 2.10. Then $\mathcal{A} \times_{\theta} \mathcal{B}$ is semisimple if and only if both \mathcal{A} and \mathcal{B} are semisimple.

PROOF. Let $\mathcal{A} \times_{\theta} \mathcal{B}$ be semisimple. Let $a \in \mathcal{A}$ and $b \in \mathcal{B}$ satisfy $\hat{a} = 0$ and $\hat{b} = 0$, i.e., $\hat{a}(\varphi) = 0$ and $\hat{b}(\psi) = 0$ for all $\varphi \in \Delta(\mathcal{A})$ and $\psi \in \Delta(\mathcal{B})$. Then $(a, 0)(\Phi) = 0$ and $(0, b)(\Phi) = 0$ for all $\Phi \in \Delta(\mathcal{A} \times_{\theta} \mathcal{B})$. Since $\mathcal{A} \times_{\theta} \mathcal{B}$ is semisimple, a = b = 0.

Conversely, let \mathcal{A} and \mathcal{B} be semisimple. Let $(a, b) \in \mathcal{A} \times_{\theta} \mathcal{B}$ be such that $\widehat{(a,b)}((\varphi,\psi)) = 0$ for all $(\varphi,\psi) \in \Delta(\mathcal{A} \times_{\theta} \mathcal{B})$. In particular, taking $\varphi = 0$, we get $\widehat{b}(\psi) = \widehat{(a,b)}((0,\psi)) = 0$. It follows from semisimplicity of \mathcal{B} that b = 0, which implies that $\widehat{a}(\varphi) = \widehat{(a,0)}((\varphi,\varphi(\theta(0) \circ a)) = 0$. The semisimplicity of \mathcal{A} implies that a = 0.

2.3. Module multipliers of $\mathcal{A} \times_{\theta} \mathcal{B}$. Let \mathcal{A} , X, and \mathcal{X} be Banach algebras, and let \mathcal{A} be an \mathcal{X} -bimodule. Then X is a *Banach* $\mathcal{A} - \mathcal{X}$ -bimodule if X is a Banach A-bimodule as well as a Banach \mathcal{X} -bimodule which satisfies conditions $(ax)\alpha = a(x\alpha), x(\alpha a) = (x\alpha)a, \alpha(ax) = (\alpha a)x, \alpha(xa) = (\alpha x)a, x(a\alpha) = (xa)\alpha, \text{ and}$ $(a\alpha)x = a(\alpha x)$ for all $a \in \mathcal{A}, x \in X$, and $\alpha \in \mathcal{X}$. Let X be an \mathcal{A} -bimodule, and let $Ann_X(\mathcal{A}) := \{x \in X : ax = 0 = xa \text{ for all } a \in \mathcal{A}\}$ be the *annihilator* of \mathcal{A} in X. A homomorphism $T : \mathcal{A} \to X$ is a *module homomorphism* if $T(a_1a_2) = T(a_1)a_2$ and $T(a_1a_2) = a_1T(a_2)$ for all $a_1, a_2 \in \mathcal{A}$. Moreover, if $T(a_1)a_2 = a_1T(a_2)$ for all $a_1, a_2 \in \mathcal{A}$, then it is a *module multiplier*. Let $M(\mathcal{A}, X)$ be the set of all module multipliers from \mathcal{A} to X.

Let X be a Banach $\mathcal{A} - \mathcal{X}$ -bimodule, Y be a Banach $\mathcal{B} - \mathcal{X}$ -bimodule, and $\theta : \mathcal{B} \longrightarrow \mathcal{X}$ be a module homomorphism. Define *module multiplications* on $X \times Y$ as $\alpha(x,y) = (\alpha x, \alpha y), (x,y)\alpha = (x\alpha, y\alpha), (a,b)(x,y) = (ax + \theta(b)x, by)$, and $(x,y)(a,b) = (xa + x\theta(b), yb)$, respectively, for all $\alpha \in \mathcal{X}, (x,y) \in X \times Y$ and $(a,b) \in \mathcal{A} \times_{\theta} \mathcal{B}.$

Lemma 2.13. Let \mathcal{A} , \mathcal{B} , and \mathcal{X} be Banach algebras, \mathcal{A} be a symmetric Banach \mathcal{X} -bimodule, \mathcal{B} be a Banach \mathcal{X} -bimodule, and let $\theta : \mathcal{B} \longrightarrow \mathcal{X}$ be a module homomorphism with $\|\theta\| \leq 1$. If X is a Banach $\mathcal{A} - \mathcal{X}$ -bimodule and Y is a Banach $\mathcal{B} - \mathcal{X}$ -bimodule, then $X \times Y$ is a Banach $(\mathcal{A} \times_{\theta} \mathcal{B}) - \mathcal{X}$ -bimodule with the above module multiplications.

PROOF. We have X a Banach $\mathcal{A}-\mathcal{X}$ -bimodule and Y a Banach $\mathcal{B}-\mathcal{X}$ -bimodule with the module multiplication $(a, x) \in \mathcal{A} \times X \mapsto ax \in X, (x, a) \in X \times \mathcal{A} \mapsto xa \in X,$ $(\alpha, x) \in \mathcal{X} \times X \mapsto \alpha x \in X, (x, \alpha) \in X \times \mathcal{X} \mapsto x\alpha \in X, (b, y) \in \mathcal{B} \times Y \mapsto by \in Y,$ $(y, b) \in Y \times \mathcal{B} \mapsto yb \in Y, (\alpha, y) \in \mathcal{X} \times Y \mapsto \alpha y \in Y,$ and $(y, \alpha) \in Y \times \mathcal{X} \mapsto y\alpha \in Y$ for all $\alpha \in \mathcal{X}, x \in X, y \in Y, a \in \mathcal{A},$ and $b \in \mathcal{B}$. Define four mappings as below.

- (1) $(\alpha, (x, y)) \in \mathcal{X} \times (X \times Y) \mapsto \alpha(x, y) \in (X \times Y),$
- $(2) \ ((x,y),\alpha) \in (X \times Y) \times \mathcal{X} \mapsto (x,y)\alpha \in (X \times Y),$
- (3) $((a,b),(x,y)) \in (\mathcal{A} \times_{\theta} \mathcal{B}) \times (X \times Y) \mapsto (a,b)(x,y) \in (X \times Y)$, and
- $(4) \ ((x,y),(a,b)) \in (X \times Y) \times (\mathcal{A} \times_{\theta} \mathcal{B}) \mapsto (x,y)(a,b) \in (X \times Y),$

where module multiplications are defined as said in hypothesis. One may verify that $X \times Y$ together with above module multiplications satisfies all conditions to be $(\mathcal{A} \times_{\theta} \mathcal{B}) - \mathcal{X}$ -bimodule.

The following theorem gives characterization of module multipliers from $\mathcal{A} \times_{\theta} \mathcal{B}$ to $X \times Y$.

Theorem 2.14. Let \mathcal{A} , \mathcal{B} , and \mathcal{X} be algebras, \mathcal{A} be an \mathcal{X} -bimodule, \mathcal{B} be an \mathcal{X} -bimodule, $\theta : \mathcal{B} \longrightarrow \mathcal{X}$ be a module homomorphism, X be a symmetric \mathcal{A} - \mathcal{X} -bimodule, Y be a \mathcal{B} - \mathcal{X} -bimodule with $Ann_Y(\mathcal{B}) = \{0\}$, and let $T : \mathcal{A} \times_{\theta} \mathcal{B} \longrightarrow X \times Y$ be a module homomorphism. Then $T \in M(\mathcal{A} \times_{\theta} \mathcal{B}, X \times Y)$ if and only if there exists module homomorphisms $T_1 : \mathcal{A} \times_{\theta} \mathcal{B} \longrightarrow X$ and $T_2 : \mathcal{A} \times_{\theta} \mathcal{B} \longrightarrow Y$ such that $T = (T_1, T_2), T_1 \mid_{\mathcal{A} \times \{0\}} \in M(\mathcal{A}, X), T_2 \mid_{\mathcal{A} \times \{0\}} = \{0\}, T_2 \mid_{\{0\} \times \mathcal{B}} \in M(\mathcal{B}, Y),$ and $\theta(b_1)T_1(a_2, b_2) = T_1(0, b_1)a_2 + T_1(0, b_1)\theta(b_2)$ for all $a_2 \in \mathcal{A}$ and $b_1, b_2 \in \mathcal{B}$.

PROOF. Let $T \in M(\mathcal{A} \times_{\theta} \mathcal{B}, X \times Y)$. Let $(a_1, b_1), (a_2, b_2) \in \mathcal{A} \times_{\theta} \mathcal{B}$. Then $(T(a_1, b_1))(a_2, b_2)$ = $(a_1, b_1)(T(a_2, b_2))$ or $(T_1(a_1, b_1), T_2(a_1, b_1))(a_2, b_2) = (a_1, b_1)(T_1(a_2, b_2), T_2(a_2, b_2))$ or

$$T_1(a_1, b_1)a_2 + T_1(a_1, b_1)\theta(b_2) = a_1T_1(a_2, b_2) + \theta(b_1)T_1(a_2, b_2)$$
(7)

and

$$T_2(a_1, b_1)b_2 = b_1 T_2(a_2, b_2).$$
(8)

Taking $a_1 = b_2 = 0$ in equations (7) and (8), we get $T_1(0, b_1)a_2 = \theta(b_1)T_1(a_2, 0)$ and $b_1T_2(a_2, 0) = 0$. Since $\operatorname{Ann}_Y(\mathcal{B}) = \{0\}$, $T_2(a_2, 0) = 0$ for all $a_2 \in \mathcal{A}$, i.e., $T_2 \mid_{\mathcal{A} \times \{0\}} = \{0\}$. Taking $b_1 = b_2 = 0$ in equations (7) and (8), we get $T_1(a_1, 0)a_2 = a_1T_1(a_2, 0)$ for all $a_1, a_2 \in \mathcal{A}$, i.e., $T_1 \mid_{\mathcal{A} \times \{0\}} \in \mathcal{M}(\mathcal{A}, X)$. Taking $a_1 = a_2 = 0$ in equations (7) and (8), we get $T_1(0, b_1)\theta(b_2) = \theta(b_1)T_1(0, b_2)$ and $T_2(0, b_1)b_2 = b_1T_2(0, b_2)$ for all $b_1, b_2 \in \mathcal{B}$, i.e., $T_2 \mid_{\{0\} \times \mathcal{B}} \in \mathcal{M}(\mathcal{B}, Y)$. One may observe that for all $a_2 \in \mathcal{A}$ and $b_1, b_2 \in \mathcal{B}$,

$$\begin{aligned} \theta(b_1)T_1(a_2, b_2) &= \theta(b_1)[T_1(a_2, 0) + T_1(0, b_2)] \\ &= \theta(b_1)T_1(a_2, 0) + \theta(b_1)T_1(0, b_2) \\ &= T_1(0, b_1)a_2 + T_1(0, b_1)\theta(b_2). \end{aligned}$$

The converse can be verified easily.

Acknowledgment

The second author is thankful to the University Grants Commission (UGC), New Delhi, India [UGC-Ref.No.:1068/(OBC)(CSIR-UGC NET DEC. 2016)] for providing Junior Research Fellowship. The authors are thankful to the referees for a critical reading of the manu- script and fruitful suggestions.

References

- F. Abtahi, A. Ghafarpanah, and A. Rejali, Biprojectivity and biflatness of Law product of Banach algebras defined by a Banach algebra morphism, Bull. Aust. Math. Soc., 91(1)(2015), 134-144.
- [2] D. E. Bagha and H. Azaraien, Module amenability and module biprojectivity of θ-Lau Product of Banach algebras, J. Liner Top. Alg., 03(2014), 185-196.
- [3] S. J. Bhatt and P. A. Dabhi, Arens regularity and amenability of Law product of Banach algebras defined by a Banch algebra morphism, Bull. Aust. Math. Soc., 87(2013), 195-206.
- [4] P. A. Dabhi and S. K. Patel, Spectral properties of the Lau product $\mathcal{A} \times_{\theta} \mathcal{B}$ of Banach algebras, Ann. Funct. Anal., **9**(2)(2018), 246-257.
- [5] H. R. Ebrahimi Vishki and A. R. Khoddami, *Character inner amenability of certain Banach algebras*, Colloq. Math., **122**(2)(2011), 225-232.
- [6] E. Kaniuth, The Bochner-Schoenberg-Eberlein property and spectral synthesis for certain Banach algebra products, Canad. J. Math., 67(4)(2015), 827-847.
- [7] A. T. Lau, Analysis on a class of Banach algebras with applications to harmonic analysis on locally compact groups and semigroups, Fund. Math., 118(3)(1983), 161-175.
- [8] M. S. Monfared, On certain products of Banach algerbras with applications to harmonic analyisis, Studia Math., 178(2007), 277-294.
- M. S. Monfared, Character amenability of Banach algebras, Math. Proc. Cambridge Philos. Soc., 144(3)(2008), 697-706.
- [10] M. Ramezanpour and S. Barootkoob, Generalized module extension Banach algebras: Derivation and Weak amenability, Quaest. Math., 40(4)(2017), 451-465.

¹Department of Mathematics, Institute of Infrastructure Technology Research and Management (IITRAM), Ahmedabad - 380026, Gujarat, India

Email address: lightatinfinite@gmail.com, prakashdabhi@iitram.ac.in

²DEPARTMENT OF MATHEMATICS, SARDAR PATEL UNIVERSITY, VALLABH VIDYANAGAR - 388120, GUJARAT, INDIA, **Current address:** GENERAL DEPARTMENT, GOVERNMENT POLY-TECHNIC, JUNAGADH - 362263, GUJARAT, INDIA

Email address: pipaliya.yuvraj29@gmail.com, yuvrajpipaliya@spuvvn.edu,

Received : March 2022 Accepted : June 2022