On various properties of module Lau product of algebras

Prakash A. Dabhi ${ }^{1}$ and Yuvraj D. Pipaliya ${ }^{2, *}$

Abstract

Let \mathcal{A}, \mathcal{B}, and \mathcal{X} be complex algebras, $\theta: \mathcal{B} \longrightarrow \mathcal{X}$ be an algebra homomorphism, and let \mathcal{A} be an \mathcal{X}-bimodule. We define a product on $\mathcal{A} \times \mathcal{B}$ as $\left(a_{1}, b_{1}\right)\left(a_{2}, b_{2}\right)=\left(a_{1} a_{2}+a_{1} \cdot \theta\left(b_{2}\right)+\theta\left(b_{1}\right) \circ a_{2}, b_{1} b_{2}\right)$ for all $\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right) \in \mathcal{A} \times \mathcal{B}$ and write $\mathcal{A} \times \mathcal{B}$ with this product by $\mathcal{A} \times{ }_{\theta} \mathcal{B}$. We shall study some basic properties of $\mathcal{A} \times{ }_{\theta} \mathcal{B}$. When \mathcal{A}, \mathcal{B} and \mathcal{X} are Banach algebras, \mathcal{A} is a Banach \mathcal{X}-bimodule, and θ is a continuous homomorphism with the norm at most 1 , we determine the ideals of $\mathcal{A} \times{ }_{\theta} \mathcal{B}$ of a certain type, the Gelfand space of this Banach algebra, and the module multipliers of this Banach algebra.

1. Introduction

Let \mathcal{A} and \mathcal{X} be complex algebras. An algebra \mathcal{A} is a left \mathcal{X}-module if there exists a bilinear map $(\alpha, a) \in \mathcal{X} \times \mathcal{A} \mapsto \alpha \circ a \in \mathcal{A}$ satisfying $(\alpha \beta) \circ a=\alpha \circ(\beta \circ a)$ and $\alpha \circ(a b)=(\alpha \circ a) b$ for all $\alpha, \beta \in \mathcal{X}$ and $a, b \in \mathcal{A}$. It is a right \mathcal{X}-module if there exists a bilinear map $(a, \alpha) \in \mathcal{A} \times \mathcal{X} \mapsto a \cdot \alpha \in \mathcal{A}$ satisfying $(a b) \cdot \alpha=a(b \cdot \alpha)$ and $a \cdot(\alpha \beta)=(a \cdot \alpha) \cdot \beta$ for all $\alpha, \beta \in \mathcal{X}$ and $a, b \in \mathcal{A}$. It is a \mathcal{X}-bimodule if it is both left \mathcal{X}-module, right \mathcal{X}-module, $\alpha \circ(a \cdot \beta)=(\alpha \circ a) \cdot \beta$ and $(a \cdot \alpha) b=a(\alpha \circ b)$ for all $\alpha, \beta \in \mathcal{X}$ and $a, b \in \mathcal{A}$. It is a symmetric \mathcal{X}-bimodule if it is \mathcal{X}-bimodule, $\alpha \circ a=a \cdot \alpha$ for all $a \in \mathcal{A}$ and $\alpha \in \mathcal{X}$.

Let $\left(\mathcal{A},\|\cdot\|_{\mathcal{A}}\right)$ and $\left(\mathcal{X},\|\cdot\|_{\mathcal{X}}\right)$ be normed algebras. Then \mathcal{A} is a normed left \mathcal{X}-module if it is a left \mathcal{X}-module and there exists a constant $P>0$ such that $\| \alpha \circ$ $a\left\|_{\mathcal{A}} \leq P\right\| \alpha\left\|_{\mathcal{X}}\right\| a \|_{\mathcal{A}}$ for all $\alpha \in \mathcal{X}$ and $a \in \mathcal{A}$. It is a normed right \mathcal{X}-module if it is a

[^0]right \mathcal{X}-module and there exists a constant $Q>0$ such that $\|a \cdot \alpha\|_{\mathcal{A}} \leq Q\|a\|_{\mathcal{A}}\|\alpha\|_{\mathcal{X}}$ for all $a \in \mathcal{A}$ and $\alpha \in \mathcal{X}$. It is a normed \mathcal{X}-bimodule if it is an \mathcal{X}-bimodule and there is $R>0$ such that $\|\alpha \circ a\|_{\mathcal{A}} \leq R\|\alpha\|_{\mathcal{X}}\|a\|_{\mathcal{A}}$ and $\|a \cdot \alpha\|_{\mathcal{A}} \leq R\|a\|_{\mathcal{A}}\|\alpha\|_{\mathcal{X}}$ for all $a \in \mathcal{A}$ and $\alpha \in \mathcal{X}$. It is a Banach \mathcal{X}-bimodule if both \mathcal{A} and \mathcal{X} are complete as a normed linear space.

Definition 1.1. Let \mathcal{A}, \mathcal{B}, and \mathcal{X} be complex algebras, $\theta: \mathcal{B} \longrightarrow \mathcal{X}$ be an algebra homomorphism, and let \mathcal{A} be an \mathcal{X}-bimodule. We define a product on $\mathcal{A} \times \mathcal{B}$ as

$$
\left(a_{1}, b_{1}\right)\left(a_{2}, b_{2}\right)=\left(a_{1} a_{2}+a_{1} \cdot \theta\left(b_{2}\right)+\theta\left(b_{1}\right) \circ a_{2}, b_{1} b_{2}\right)
$$

for all $\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right) \in \mathcal{A} \times \mathcal{B}$. Then $\mathcal{A} \times \mathcal{B}$ together with co-ordinatewise linear operations and the above product is an associative algebra. We denote this algebra by $\mathcal{A} \times{ }_{\theta} \mathcal{B}$.

If $\left(\mathcal{A},\|\cdot\|_{\mathcal{A}}\right),\left(\mathcal{B},\|\cdot\|_{\mathcal{B}}\right)$, and $\left(\mathcal{X},\|\cdot\|_{\mathcal{X}}\right)$ are Banach algebras, \mathcal{A} is a Banach \mathcal{X}-bimodule and $\theta: \mathcal{B} \longrightarrow \mathcal{X}$ is an algebra homomorphism with $\|\theta\| \leq 1$, then $\mathcal{A} \times{ }_{\theta} \mathcal{B}$ is the Banach algebra with the norm $\|(a, b)\|_{1}=\|a\|_{\mathcal{A}}+\|b\|_{\mathcal{B}}$.

If we define a norm on $\mathcal{A} \times_{\theta} \mathcal{B}$ as $|(a, b)|=\max \left\{\|a\|_{\mathcal{A}}+\|\theta(b)\|_{\mathcal{X}},\|b\|_{\mathcal{B}}\right\}$ for all $(a, b) \in \mathcal{A} \times{ }_{\theta} \mathcal{B}$, then $\left(\mathcal{A} \times_{\theta} \mathcal{B},|\cdot|\right)$ is also a Banach algebra. In fact, $\|(a, b)\|_{1} \leq$ $2|(a, b)| \leq 2\|(a, b)\|_{1}$ for all $(a, b) \in \mathcal{A} \times{ }_{\theta} \mathcal{B}$. If we identify $\mathcal{A} \times\{0\}$ with \mathcal{A} and $\{0\} \times \mathcal{B}$ with \mathcal{B} in $\mathcal{A} \times{ }_{\theta} \mathcal{B}$, then \mathcal{A} and \mathcal{B} are closed ideal and closed subalgebra of $\mathcal{A} \times{ }_{\theta} \mathcal{B}$ respectively and the quotient $\left(\mathcal{A} \times{ }_{\theta} \mathcal{B}\right) / \mathcal{A}$ is isometrically isomorphic to \mathcal{B}, i.e., $\mathcal{A} \times{ }_{\theta} \mathcal{B}$ is a strong splitting Banach algebra extension of \mathcal{B} by \mathcal{A}. Throughout the paper, all algebras are considered to be complex algebras.

The above multiplication on $\mathcal{A} \times \mathcal{B}$ generalizes some known multiplication on the product space $\mathcal{A} \times \mathcal{B}$. They are as follows.
(1) Let \mathcal{A} and \mathcal{B} be algebras, let $\mathcal{X}=\mathbb{C}$, and let $\theta: \mathcal{B} \rightarrow \mathbb{C}$ be a homomorphism. Then \mathcal{A} is a \mathbb{C}-bimodule with respect to the module operations defined as $a \cdot \alpha=$ $\alpha \circ a=\alpha a$ for all $\alpha \in \mathbb{C}$ and $a \in \mathcal{A}$. It can be seen that $\mathcal{A} \times{ }_{\theta} \mathcal{B}$ is the θ-Lau product of \mathcal{A} and \mathcal{B}.

Lau first introduced θ-Lau product in [7] for certain classes of Banach algebras. Later, it was extended and studied by Monfared for general case in [8]. Various Banach algebra properties of $\mathcal{A} \times{ }_{\theta} \mathcal{B}$ are studied in different papers, for example, $[1,2,4,5,6,8,9]$ etc.
(2) Let \mathcal{A} and \mathcal{B} be algebras, and let $\mathcal{X}=\mathcal{A}$. It is clear that \mathcal{A} is a \mathcal{A}-bimodule with respect to the module operations defined as $\left(a_{1}, a_{2}\right) \in \mathcal{A} \times \mathcal{A} \mapsto a_{1} a_{2} \in \mathcal{A}$ and $\left(a_{1}, a_{2}\right) \in \mathcal{A} \times \mathcal{A} \mapsto a_{2} a_{1} \in \mathcal{A}$ for all $a_{1}, a_{2} \in \mathcal{A}$. Let $\theta: \mathcal{B} \longrightarrow \mathcal{A}$ be an algebra homomorphism. It can be seen that $\mathcal{A} \times{ }_{\theta} \mathcal{B}$ is the T-Lau product of \mathcal{A} and $\mathcal{B}[3]$. (3) Let \mathcal{A} and \mathcal{B} be algebras, $\mathcal{B}=\mathcal{X}, \mathcal{A}$ be an \mathcal{X}-bimodule, and $\theta=I$, the identity map. Then θ is an algebra homomorphism and \mathcal{A} is an algebraic \mathcal{B}-module. Then
$\mathcal{A} \times{ }_{\theta} \mathcal{B}$ is the \bowtie-product of \mathcal{A} and \mathcal{B}. Ramezanpour and Barootkoob introduced $\bowtie-$ product in [10].
(4) Let $\mathcal{A}, \mathcal{B}, \mathcal{X}$ be algebras, and let \mathcal{A} be an \mathcal{X}-bimodule. If we define $\theta: \mathcal{B} \longrightarrow \mathcal{X}$ as $\theta(b)=0$ for all $b \in \mathcal{B}$, then θ is an algebra homomorphism. Clearly, $\mathcal{A} \times{ }_{\theta} \mathcal{B}$ is the Cartesian product of \mathcal{A} and \mathcal{B}.

2. Some basic properties of $\mathcal{A} \times{ }_{\theta} \mathcal{B}$

An algebra \mathcal{A} is commutative if $a b=b a$ for all $a, b \in \mathcal{A}$. An element $e \in \mathcal{A}$ is an identity for \mathcal{A} if $a e=a=e a$ for all $a \in \mathcal{A}$.

Lemma 2.1. Let \mathcal{A}, \mathcal{B}, and \mathcal{X} be algebras, $\theta: \mathcal{B} \longrightarrow \mathcal{X}$ be an algebra homomorphism, and let \mathcal{A} be a symmetric \mathcal{X}-bimodule. Then the following statements hold.
(1) $\mathcal{A} \times{ }_{\theta} \mathcal{B}$ is commutative if and only if \mathcal{A} and \mathcal{B} are commutative.
(2) $\left(0, e_{\mathcal{B}}\right)$ is the identity for $\mathcal{A} \times{ }_{\theta} \mathcal{B}$ if and only if $e_{\mathcal{B}}$ is the identity for \mathcal{B} and $a \cdot \theta\left(e_{\mathcal{B}}\right)=a$ for all $a \in \mathcal{A}$.

Proof. The statement (1) is a simple verification.
(2) Let $\left(0, e_{\mathcal{B}}\right)$ be the identity for $\mathcal{A} \times{ }_{\theta} \mathcal{B}$. It follows from $\left(a \cdot \theta\left(e_{\mathcal{B}}\right), b e_{\mathcal{B}}\right)=(a, b)\left(0, e_{\mathcal{B}}\right)=$ $(a, b)=\left(0, e_{\mathcal{B}}\right)(a, b)=\left(\theta\left(e_{\mathcal{B}}\right) \circ a, e_{\mathcal{B}} b\right)$ that $a \cdot \theta\left(e_{\mathcal{B}}\right)=a=\theta\left(e_{\mathcal{B}}\right) \circ a$ and $b e_{\mathcal{B}}=b=e_{\mathcal{B}} b$ for all $a \in \mathcal{A}$ and $b \in \mathcal{B}$.

Conversely, let $e_{\mathcal{B}}$ be the identity for \mathcal{B} and $a \cdot \theta\left(e_{\mathcal{B}}\right)=a$ for all $a \in \mathcal{A}$. Since \mathcal{A} is a symmetric \mathcal{X}-bimodule, $(a, b)\left(0, e_{\mathcal{B}}\right)=\left(a \cdot \theta\left(e_{\mathcal{B}}\right), b e_{\mathcal{B}}\right)=(a, b)$ and $\left(0, e_{\mathcal{B}}\right)(a, b)=$ $\left(\theta\left(e_{\mathcal{B}}\right) \circ a, e_{\mathcal{B}} b\right)=(a, b)$ for all $(a, b) \in \mathcal{A} \times{ }_{\theta} \mathcal{B}$.

A net $\left\{e_{\alpha}\right\}_{\alpha \in \Lambda}$ of elements of \mathcal{A} is a bounded left approximate identity for a normed algebra $\left(\mathcal{A},\|\cdot\|_{\mathcal{A}}\right)$ if there exists some $M>0$ such that $\left\|e_{\alpha}\right\|_{\mathcal{A}} \leq M$ for all $\alpha \in \Lambda$ and $\left\|e_{\alpha} a-a\right\|_{\mathcal{A}} \rightarrow 0$ for all $a \in \mathcal{A}$. Similarly, a bounded right approximate identity and a bounded (two sided) approximate identity are defined.

Proposition 2.2. Let $\left(\mathcal{A},\|\cdot\|_{\mathcal{A}}\right),\left(\mathcal{B},\|\cdot\|_{\mathcal{B}}\right)$, and $\left(\mathcal{X},\|\cdot\|_{\mathcal{X}}\right)$ be normed algebras, $\theta: \mathcal{B} \longrightarrow \mathcal{X}$ be an algebra homomorphism with $\|\theta\| \leq 1$, and let \mathcal{A} be a normed \mathcal{X}-bimodule. Then $\left\{\left(e_{\alpha}, f_{\alpha}\right)\right\}_{\alpha \in \Lambda}$ is a bounded left (right, or two sided) approximate identity for $\mathcal{A} \times_{\theta} \mathcal{B}$ if and only if $\left\{f_{\alpha}\right\}_{\alpha \in \Lambda}$ is a bounded left (right, or two sided) approximate identity for $\mathcal{B},\left\{e_{\alpha}\right\}_{\alpha \in \Lambda}$ is bounded, $\left\|e_{\alpha} a+\theta\left(f_{\alpha}\right) \circ a-a\right\|_{\mathcal{A}} \rightarrow 0$, and $\left\|e_{\alpha} \cdot \theta(b)\right\|_{\mathcal{A}} \rightarrow 0$.

Proof. Let $\left\{\left(e_{\alpha}, f_{\alpha}\right)\right\}_{\alpha \in \Lambda}$ be a bounded left approximate identity for $\mathcal{A} \times{ }_{\theta} \mathcal{B}$. Then there exists some $M>0$ such that $\left|\left(e_{\alpha}, f_{\alpha}\right)\right| \leq M$ for all $\alpha \in \Lambda$ and $\left|\left(e_{\alpha}, f_{\alpha}\right)(a, b)-(a, b)\right| \rightarrow 0$ for all $(a, b) \in \mathcal{A} \times_{\theta} \mathcal{B}$. By definition of $|\cdot|$, the nets
$\left\{e_{\alpha}\right\}_{\alpha \in \Lambda}$ and $\left\{f_{\alpha}\right\}_{\alpha \in \Lambda}$ are bounded. If $b \in \mathcal{B}$,

$$
\begin{aligned}
\max \left\{\left\|e_{\alpha} \cdot \theta(b)\right\|_{\mathcal{A}},\left\|f_{\alpha} b-b\right\|_{\mathcal{B}}\right\} & \leq \max \left\{\left\|e_{\alpha} \cdot \theta(b)\right\|_{\mathcal{A}}+\left\|\theta\left(f_{\alpha} b-b\right)\right\|_{\mathcal{X}},\left\|f_{\alpha} b-b\right\|_{\mathcal{B}}\right\} \\
& =\left|\left(e_{\alpha} \cdot \theta(b), f_{\alpha} b-b\right)\right|=\left|\left(e_{\alpha}, f_{\alpha}\right)(0, b)-(0, b)\right| .
\end{aligned}
$$

If $a \in \mathcal{A}$,

$$
\begin{aligned}
\left\|e_{\alpha} a+\theta\left(f_{\alpha}\right) \circ a-a\right\|_{\mathcal{A}} & =\max \left\{\left\|e_{\alpha} a+\theta\left(f_{\alpha}\right) \circ a-a\right\|_{\mathcal{A}}+\|0\|_{\mathcal{X}},\|0\|_{\mathcal{B}}\right\} \\
& =\left|\left(e_{\alpha} a+\theta\left(f_{\alpha}\right) \circ a-a, 0\right)\right|=\left|\left(e_{\alpha}, f_{\alpha}\right)(a, 0)-(a, 0)\right|
\end{aligned}
$$

So, $\left\|f_{\alpha} b-b\right\|_{\mathcal{B}} \rightarrow 0,\left\|e_{\alpha} \cdot \theta(b)\right\|_{\mathcal{A}} \rightarrow 0$, and $\left\|e_{\alpha} a+\theta\left(f_{\alpha}\right) \circ a-a\right\|_{\mathcal{A}} \rightarrow 0$.
Assume the converse. Let $(a, b) \in \mathcal{A} \times{ }_{\theta} \mathcal{B}$. Then

$$
\begin{aligned}
& \left|\left(e_{\alpha}, f_{\alpha}\right)(a, b)-(a, b)\right| \\
= & \max \left\{\left\|e_{\alpha} a+e_{\alpha} \cdot \theta(b)+\theta\left(f_{\alpha}\right) \circ a-a\right\|_{\mathcal{A}}+\left\|\theta\left(f_{\alpha} b-b\right)\right\|_{\mathcal{X}},\left\|f_{\alpha} b-b\right\|_{\mathcal{B}}\right\} \\
\leq & \max \left\{\left\|e_{\alpha} a+\theta\left(f_{\alpha}\right) \circ a-a\right\|_{\mathcal{A}}+\left\|e_{\alpha} \cdot \theta(b)\right\|_{\mathcal{A}}+\left\|\theta\left(f_{\alpha} b-b\right)\right\|_{\mathcal{X}},\left\|f_{\alpha} b-b\right\|_{\mathcal{B}}\right\} .
\end{aligned}
$$

It follows from the fact $\|\theta\| \leq 1$ and our assumptions that $\left\{\left(e_{\alpha}, f_{\alpha}\right)\right\}_{\alpha \in \Lambda}$ is a bounded left approximate identity for $\mathcal{A} \times{ }_{\theta} \mathcal{B}$.

An element $a \in \mathcal{A}$ is an idempotent if $a^{2}=a$ and a non-zero idempotent a is a minimal idempotent if $a \mathcal{A} a$ is a division algebra or $a \mathcal{A} a=\mathbb{C} a$. Let \mathcal{A}, \mathcal{B}, and \mathcal{X} be algebras, $\theta: \mathcal{B} \longrightarrow \mathcal{X}$ be an algebra homomorphism. It is clear that $(a, b) \in \mathcal{A} \times{ }_{\theta} \mathcal{B}$ is an idempotent if and only if $b \in \mathcal{B}$ is an idempotent and $a^{2}+a \cdot \theta(b)+\theta(b) \circ a=a$.

Proposition 2.3. Let \mathcal{A}, \mathcal{B}, and \mathcal{X} be algebras, $\theta: \mathcal{B} \longrightarrow \mathcal{X}$ be an injective algebra homomorphism. Then (a, b) is a minimal idempotent in $\mathcal{A} \times{ }_{\theta} \mathcal{B}$ if and only if $(a, \theta(b))$ is a minimal idempotent in $\mathcal{A} \bowtie \theta(\mathcal{B})$ and b is a minimal idempotent in \mathcal{B} provided $b \neq 0$.

Proof. Let $(a, b) \in \mathcal{A} \times_{\theta} \mathcal{B}$ be a minimal idempotent, i.e., $(a, b)^{2}=(a, b)$ and $(a, b)\left(\mathcal{A} \times{ }_{\theta} \mathcal{B}\right)(a, b)=\mathbb{C}(a, b)$ or $(a, b)^{2}=(a, b)$ and given $\left(a_{0}, b_{0}\right) \in \mathcal{A} \times{ }_{\theta} \mathcal{B}$, there exists some $\lambda_{\left(a_{0}, b_{0}\right)} \in \mathbb{C}$ such that $(a, b)\left(a_{0}, b_{0}\right)(a, b)=\lambda_{\left(a_{0}, b_{0}\right)}(a, b)$. So,

$$
\begin{gather*}
a^{2}+a \cdot \theta(b)+\theta(b) \circ a=a, \tag{1}\\
b^{2}=b \quad \text { and } \tag{2}\\
a a_{0} a+\left(a \cdot \theta\left(b_{0}\right)\right) a+\left(\theta(b) \circ a_{0}\right) a+a a_{0} \cdot \theta(b)+\left(a \cdot \theta\left(b_{0}\right)\right) \cdot \theta(b) \\
+\left(\theta(b) \circ a_{0}\right) \cdot \theta(b)+\theta\left(b b_{0}\right) \circ a=\lambda_{\left(a_{0}, b_{0}\right)} a, \tag{3}\\
 \tag{4}\\
\quad b b_{0} b=\lambda_{\left(a_{0}, b_{0}\right)} b .
\end{gather*}
$$

It follows from equations (2) and (4) that if $b \neq 0$, then b is a minimal idempotent with $\lambda_{\left(a_{0}, b_{0}\right)}=\lambda_{\left(0, b_{0}\right)}$ for all $a_{0} \in \mathcal{A}$ and it follows from above four equations that $(a, \theta(b))^{2}=(a, \theta(b))$ and $(a, \theta(b))\left(a_{0}, \theta\left(b_{0}\right)\right)(a, \theta(b))=\lambda_{\left(a_{0}, b_{0}\right)}(a, \theta(b))$ for all $\left(a_{0}, b_{0}\right) \in$ $\mathcal{A} \times{ }_{\theta} \mathcal{B}$.

Conversely, let $b \in \mathcal{B}$ be a minimal idempotent, i.e., $b^{2}=b$ and for given $b_{1} \in \mathcal{B}$, there exists some $\lambda_{b_{1}} \in \mathbb{C}$ such that $b b_{1} b=\lambda_{b_{1}} b$. This gives $\theta\left(b b_{1} b\right)=$ $\theta\left(\lambda_{b_{1}} b\right)$. Since $(a, \theta(b)) \in \mathcal{A} \bowtie \theta(\mathcal{B})$ is a minimal idempotent, i.e., $(a, \theta(b))^{2}=$ $(a, \theta(b))$ and for given $\left(a_{0}, \theta\left(b_{0}\right)\right) \in \mathcal{A} \bowtie \theta(\mathcal{B})$, there exists some $\lambda_{\left(a_{0}, \theta\left(b_{0}\right)\right)} \in \mathbb{C}$ such that $(a, \theta(b))\left(a_{0}, \theta\left(b_{0}\right)\right)(a, \theta(b))=\lambda_{\left(a_{0}, \theta\left(b_{0}\right)\right)}(a, \theta(b))$. So, $(a, \theta(b))\left(a_{0}, \theta\left(b_{1}\right)\right)(a, \theta(b))=$ $\lambda_{\left(a_{0}, \theta\left(b_{1}\right)\right)}(a, \theta(b))$. It follows from injectivity of θ that $\lambda_{\left(a_{0}, \theta\left(b_{1}\right)\right)}=\lambda_{b_{1}}$. The case $b=0$ is easy to verify.

The following example show that the condition that θ is injective in the Proposition 2.3 is necessary.

Example 2.1. We consider the semigroup \mathbb{N} with the gcd binary operation and we denote \mathbb{N} with this binary operation by $\mathbb{N}_{\text {gcd }}$. The semigroup algebra

$$
\ell^{1}(\mathbb{N})=\left\{f: \mathbb{N} \rightarrow \mathbb{C}:\|f\|=\sum_{n \in \mathbb{N}}|f(n)|<\infty\right\}
$$

is a commutative Banach algebra with the above norm and the convolution multiplication

$$
(f \star g)(n)=\sum_{\operatorname{gcd}(u, v)=n} f(u) g(v) \quad\left(f, g \in \ell^{1}\left(\mathbb{N}_{\mathrm{gcd}}\right), n \in \mathbb{N}\right)
$$

We write an element f of $\ell^{1}\left(\mathbb{N}_{\mathrm{gcd}}\right)$ by $f=\sum_{n \in \mathbb{N}} f(n) \delta_{n}$, where $\delta_{n}: \mathbb{N} \rightarrow \mathbb{C}$ is defined by $\delta_{n}(n)=1$ and $\delta_{n}(m)=0$ if $m \neq n$. Take $\mathcal{A}=\mathcal{B}=\ell^{1}\left(\mathbb{N}_{\mathrm{gcd}}\right)$ and define $\theta: \mathcal{B} \rightarrow \mathbb{C}$ by $\theta(f)=\sum_{n \in \mathbb{N}} f(2 n)$ for all $f \in \mathcal{B}$. Then θ is a complex homomorphism on \mathcal{B} and θ is not injective. Note that $\delta_{1} \star \delta_{m}=\delta_{\operatorname{gcd}(1, m)}=\delta_{1}$ for all $m \in \mathbb{N}$. So, if $f=\sum_{n \in \mathbb{N}} f(n) \delta_{n} \in \ell^{1}(\mathbb{N})$, then $\delta_{1} \star f=\sum_{n \in \mathbb{N}} f(n) \delta_{1}=\left(\sum_{n \in \mathbb{N}} f(n)\right) \delta_{1}$. Clearly, $\delta_{1} \star \delta_{1}=\delta_{1}$ and $\delta_{1} \star f \star \delta_{1}=\left(\sum_{n \in \mathbb{N}} f(n)\right) \delta_{1}$, i.e., δ_{1} is a minimal idempotent in \mathcal{B}. We now show that $\left(\delta_{1}, \theta\left(\delta_{1}\right)\right)=\left(\delta_{1}, 0\right)$ is a minimal idempotent in $\mathcal{A} \bowtie \theta(\mathcal{B})$. First observe that $\left(\delta_{1}, 0\right)\left(\delta_{1}, 0\right)=\left(\delta_{1}, 0\right)$. Let $(f, \theta(g))$ be in $\mathcal{A} \bowtie \theta(\mathcal{B})$. Then

$$
\begin{aligned}
\left(\delta_{1}, 0\right)(f, \theta(g))\left(\delta_{1}, 0\right) & =\left(\delta_{1} \star f+\theta(g) \delta_{1}, 0\right)\left(\delta_{1}, 0\right) \\
& =\left(\left(\sum_{n \in \mathbb{N}} f(n)+\theta(g)\right) \delta_{1}, 0\right)\left(\delta_{1}, 0\right) \\
& =\left(\left(\sum_{n \in \mathbb{N}} f(n)+\theta(g)\right) \delta_{1}, 0\right) \\
& =\left(\sum_{n \in \mathbb{N}} f(n)+\theta(g)\right)\left(\delta_{1}, 0\right)
\end{aligned}
$$

Therefore $\left(\delta_{1}, \theta\left(\delta_{1}\right)\right)$ is a minimal idempotent in $\mathcal{A} \bowtie \theta(\mathcal{B})$. We now show that $\left(\delta_{1}, \delta_{1}\right)$ is not a minimal idempotent in $\mathcal{A} \times{ }_{\theta} \mathcal{B}$. Notice that

$$
\begin{aligned}
\left(\delta_{1}, \delta_{1}\right)\left(\delta_{2}, \delta_{2}\right)\left(\delta_{1}, \delta_{1}\right) & =\left(\delta_{1} \star \delta_{2}+\theta\left(\delta_{2}\right) \delta_{1}+\theta\left(\delta_{1}\right) \delta_{2}, \delta_{1}\right)\left(\delta_{1}, \delta_{1}\right) \\
& =\left(\delta_{1}+\delta_{1}, \delta_{1}\right)\left(\delta_{1}, \delta_{1}\right) \\
& =\left(2 \delta_{1}, \delta_{1}\right)
\end{aligned}
$$

and $\left(2 \delta_{1}, \delta_{1}\right) \neq \lambda\left(\delta_{1}, \delta_{1}\right)$ for any $\lambda \in \mathbb{C}$. Therefore $\left(\delta_{1}, \delta_{1}\right)$ is not a minimal idempotent in $\mathcal{A} \times{ }_{\theta} \mathcal{B}$.
2.1. Ideals of the type $I \times J$ in $\mathcal{A} \times{ }_{\theta} \mathcal{B}$. A subset I of \mathcal{A} is a left ideal in \mathcal{A} if I is a linear subspace of \mathcal{A} and $a I \subseteq I$ for all $a \in \mathcal{A}$. Similarly, a right ideal and an ideal are defined. A left ideal I is a modular left ideal in \mathcal{A} with modular unit u if there exists $u \in \mathcal{A}$ such that $a u-a \in I$ for all $a \in \mathcal{A}$. Similarly, a modular right ideal and a modular ideal are defined. An ideal I is proper if $I \neq \mathcal{A}$. A proper left ideal I is maximal if $J=I$ or $J=\mathcal{A}$ whenever J is a left ideal in \mathcal{A} containing I. An ideal I is a prime ideal if $a \in I$ or $b \in I$ whenever $a, b \in \mathcal{A}$ and $a b \in I$.

Proposition 2.4. Let K be a left ideal in a Banach algebra $\mathcal{A} \times{ }_{\theta} \mathcal{B}$. Define two sets $I=\{a \in \mathcal{A}:(a, b) \in K$ for some $b \in \mathcal{B}\}$ and $J=\{b \in \mathcal{B}:(a, b) \in$ K for some $a \in \mathcal{A}\}$. Then the following statements hold.
(1) J is a left ideal in \mathcal{B}.
(2) If θ vanishes on J, then I is a left ideal in \mathcal{A}. If in addition \mathcal{A} has a left approximate identity and K is closed in $\mathcal{A} \times{ }_{\theta} \mathcal{B}$, then $K=I \times J$.
(3) If θ does not vanish on J and $\mathcal{A} \cdot \theta(J) \subseteq I$, then I is a left ideal in \mathcal{A}

Proof. (1) Let $b \in J$. Then there exists some $a \in \mathcal{A}$ such that $(a, b) \in K$. Let $b_{1} \in \mathcal{B}$. Then $\left(\theta\left(b_{1}\right) \circ a, b_{1} b\right)=\left(0, b_{1}\right)(a, b) \in K$, i.e., we get an element $\theta\left(b_{1}\right) \circ a \in \mathcal{A}$ such that $\left(\theta\left(b_{1}\right) \circ a, b_{1} b\right) \in K$. Hence $b_{1} b \in J$.
(2) Let θ vanish on J and $a \in I$. Then there exists some $b \in \mathcal{B}$ such that $(a, b) \in K$. Since $a \in I \subseteq \mathcal{A}$, by definition of J, we have $b \in J$. Let $a_{1} \in \mathcal{A}$. Then $\left(a_{1} a, 0\right)=\left(a_{1} a+a_{1} \cdot \theta(b), 0\right)=\left(a_{1}, 0\right)(a, b) \in K$, i.e., we get an element $0 \in \mathcal{B}$ such that $\left(a_{1} a, 0\right) \in K$. Therefore, $a_{1} a \in I$.

Let $\left\{a_{\alpha}\right\}_{\alpha \in \Lambda}$ be a left approximate identity for \mathcal{A} and K be closed in $\mathcal{A} \times{ }_{\theta} \mathcal{B}$. By definitions of I and $J, K \subseteq I \times J$. Now, let $p \in I$ and $q \in J$. We show that $(p, q) \in K$. Since $p \in I$ and $q \in J$, there exist $b \in \mathcal{B}$ and $a \in \mathcal{A}$ such that $(p, b) \in$ K and $(a, q) \in K$. Then $\left(a_{\alpha} a, 0\right)=\left(a_{\alpha} a+a_{\alpha} \cdot \theta(q), 0\right)=\left(a_{\alpha}, 0\right)(a, q) \in K$ and $\left|\left(a_{\alpha} a, 0\right)-(a, 0)\right|=\left\|a_{\alpha} a-a\right\|_{\mathcal{A}} \rightarrow 0$. Since K is closed in $\mathcal{A} \times_{\theta} \mathcal{B},(a, 0) \in K$. Similarly, we can show that $(p, 0) \in K$. So, $(0, q)=(a, q)-(a, 0) \in K$. Hence $(p, q)=(p, 0)+(0, q) \in K$.
(3) It follows from the proof of (2).

Lemma 2.5. Let I and J be two non-empty subsets of \mathcal{A} and \mathcal{B} respectively. Then $I \times J$ is a left ideal in $\mathcal{A} \times{ }_{\theta} \mathcal{B}$ if and only if I is a left ideal in \mathcal{A}, J is a left ideal in $\mathcal{B}, \mathcal{A} \cdot \theta(J) \subseteq I$ and $\theta(\mathcal{B}) \circ I \subseteq I$.

Proof. Let $I \times J$ be a left ideal in $\mathcal{A} \times{ }_{\theta} \mathcal{B}$. Then for all $(a, b) \in \mathcal{A} \times{ }_{\theta} \mathcal{B}$ and $(i, j) \in I \times J,(a i+a \cdot \theta(j)+\theta(b) \circ i, b j)=(a, b)(i, j) \in I \times J$ or $a i+a \cdot \theta(j)+\theta(b) \circ i \in I$ and $b j \in J$. So, J is a left ideal in \mathcal{B} and $a i+a \cdot \theta(j)+\theta(b) \circ i \in I$. In particular, taking $a=0$, we get $\theta(b) \circ i \in I$, i.e., $\theta(\mathcal{B}) \circ I \subseteq I$ and taking $i=0$ and $j=0$ respectively, we get $a \cdot \theta(j) \in I$, i.e., $\mathcal{A} \cdot \theta(J) \subseteq I$ and $a i+\theta(b) \circ i \in I$ and so $a i=(a i+\theta(b) \circ i)-(\theta(b) \circ i) \in I$.

Assume the converse. Let $(a, b) \in \mathcal{A} \times{ }_{\theta} \mathcal{B}$ and $(i, j) \in I \times J$. Then $(a, b)(i, j)=$ $(a i+a \cdot \theta(j)+\theta(b) \circ i, b j) \in I \times J$ by our assumption.

Let \mathcal{A} be an \mathcal{X}-bimodule. A left ideal I is a modular left \mathcal{X}-ideal in \mathcal{A} with modular \mathcal{X}-unit x if there exists $x \in \mathcal{X}$ such that $a x-a \in I$ for all $a \in \mathcal{A}$. Similarly, a modular right \mathcal{X}-ideal and a modular \mathcal{X}-ideal are defined.

Proposition 2.6. Let I be a left ideal in \mathcal{A} and J be a left ideal in \mathcal{B}. Then $I \times J$ is a modular left ideal in $\mathcal{A} \times{ }_{\theta} \mathcal{B}$ with modular unit (i, j) if and only if I is a modular left \mathcal{X}-ideal in \mathcal{A} with modular \mathcal{X}-unit $\theta(j)$, J is a modular left ideal in \mathcal{B} with modular unit $j, \mathcal{A} \cdot \theta(J) \subseteq I$ and $\theta(\mathcal{B}) \circ I \subseteq I$.

Proof. Let $I \times J$ be a modular left ideal in $\mathcal{A} \times{ }_{\theta} \mathcal{B}$ with modular unit (i, j). Then for all $(a, b) \in \mathcal{A} \times{ }_{\theta} \mathcal{B},(a, b)(i, j)-(a, b) \in I \times J$ or $a i+a \cdot \theta(j)+\theta(b) \circ i-a \in$ I and $b j-b \in J$. So, J is a modular left ideal in \mathcal{B} with modular unit j and $a i+a \cdot \theta(j)+\theta(b) \circ i-a \in I$. By Lemma 2.5, I is a left ideal in \mathcal{A}, J is a left ideal in \mathcal{B}, and $\mathcal{A} \cdot \theta(J) \subseteq I, \theta(\mathcal{B}) \circ I \subseteq I$. Since I is a left ideal in \mathcal{A}, ai $\in I$ and so $a \cdot \theta(j)+\theta(b) \circ i-a \in I$ for all $a \in \mathcal{A}$ and $b \in \mathcal{B}$. In particular, taking $b=0$, we get $a \cdot \theta(j)-a \in I$ for all $a \in \mathcal{A}$. So, I is a modular left \mathcal{X}-ideal in \mathcal{A} with modular \mathcal{X}-unit $\theta(j)$.

Assume the converse. Let $(a, b) \in \mathcal{A} \times{ }_{\theta} \mathcal{B}$ and $(i, j) \in I \times J$. Then $(a, b)(i, j)-$ $(a, b)=(a i+a \cdot \theta(j)+\theta(b) \circ i-a, b j-b) \in I \times J$ by our assumptions.

Lemma 2.7. Let K be a left ideal in $\mathcal{A} \times{ }_{\theta} \mathcal{B}$ containing $\{0\} \times \mathcal{B}$. Then there is a left ideal I in \mathcal{A} such that $K=I \times \mathcal{B}$. If K is a left ideal in $\mathcal{A} \times{ }_{\theta} \mathcal{B}$ containing $\mathcal{A} \times\{0\}$, then there is a left ideal J in \mathcal{B} such that $K=\mathcal{A} \times J$.

Proof. Let K be a left ideal in $\mathcal{A} \times{ }_{\theta} \mathcal{B}$ containing $\{0\} \times \mathcal{B}$. Let $I=\{a \in \mathcal{A}$: $(a, b) \in K$ for some $b \in \mathcal{B}\}$. It is enough to prove that I is a left ideal in \mathcal{A}. For that, let $i \in I$. Then there exists $b \in \mathcal{B}$ such that $(i, b) \in K$. Since $(0, b) \in\{0\} \times \mathcal{B} \subseteq$ $K,(i, 0) \in K$. Let $a \in \mathcal{A}$. Then $(a i, 0)=(a, 0)(i, 0) \in K$. Therefore I is a left ideal in \mathcal{A}.

One can prove the second statement in a similar way.

Proposition 2.8. Let I and J be left ideals of \mathcal{A} and \mathcal{B} respectively. Then the following statements hold.
(1) $I \times \mathcal{B}$ is a maximal left ideal in $\mathcal{A} \times{ }_{\theta} \mathcal{B}$ if and only if I is a maximal left ideal in $\mathcal{A}, \mathcal{A} \cdot \theta(\mathcal{B}) \subseteq I$ and $\theta(\mathcal{B}) \circ I \subseteq I$.
(2) $\mathcal{A} \times J$ is a maximal left ideal in $\mathcal{A} \times{ }_{\theta} \mathcal{B}$ if and only if J is a maximal left ideal in \mathcal{B}.
(3) $I \times J$ is a maximal left ideal in $\mathcal{A} \times{ }_{\theta} \mathcal{B}$ if and only if either $I=\mathcal{A}$ with J is a maximal left ideal in \mathcal{B} or $J=\mathcal{B}$ with I is a maximal left ideal in \mathcal{A}, $\mathcal{A} \cdot \theta(J) \subseteq I$ and $\theta(\mathcal{B}) \circ I \subseteq I$.

Proof. It follows from Lemma 2.5 and Lemma 2.7.
Proposition 2.9. Let \mathcal{A} be a symmetric \mathcal{X}-bimodule, I be an ideal in \mathcal{A}, and J be an ideal in \mathcal{B}. Then $I \times J$ is a prime ideal in $\mathcal{A} \times{ }_{\theta} \mathcal{B}$ if and only if I is a prime ideal in \mathcal{A}, J is a prime ideal in $\mathcal{B}, \mathcal{A} \cdot \theta(J) \subseteq I$ and $\theta(\mathcal{B}) \circ I \subseteq I$.

Proof. Let $I \times J$ be a prime ideal in $\mathcal{A} \times{ }_{\theta} \mathcal{B}$. It follows from Lemma 2.5 that I is a left ideal in \mathcal{A}, J is a left ideal in $\mathcal{B}, \mathcal{A} \cdot \theta(J) \subseteq I$ and $\theta(\mathcal{B}) \circ I \subseteq I$. Let $a_{1}, a_{2} \in \mathcal{A}$ be such that $a_{1} a_{2} \in I$. Then $\left(a_{1}, 0\right)\left(a_{2}, 0\right)=\left(a_{1} a_{2}, 0\right) \in I \times J$. It follows that $a_{1} \in I$ or $a_{2} \in I$, i.e., I is a prime ideal in \mathcal{A}. Similarly, J is a prime ideal in \mathcal{B}.

Assume the converse. By Lemma 2.5, $I \times J$ is an ideal in $\mathcal{A} \times{ }_{\theta} \mathcal{B}$. Let $\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right) \in$ $\mathcal{A} \times{ }_{\theta} \mathcal{B}$ be such that $\left(a_{1}, b_{1}\right)\left(a_{2}, b_{2}\right) \in I \times J$ or $a_{1} a_{2}+a_{1} \cdot \theta\left(b_{2}\right)+\theta\left(b_{1}\right) \circ a_{2} \in I$ and $b_{1} b_{2} \in J$. Since J is a prime ideal in \mathcal{B}, either $b_{1} \in J$ or $b_{2} \in J$. We are in a situation of two cases.

Case I: Let $b_{1} \in J$. Since \mathcal{A} is a symmetric \mathcal{X}-bimodule, $\theta(J) \circ \mathcal{A}=\mathcal{A} \cdot \theta(J) \subseteq I$. So, $\theta\left(b_{1}\right) \circ a_{2}=a_{2} \cdot \theta\left(b_{1}\right) \in I$. Therefore, $a_{1} a_{2}+a_{1} \cdot \theta\left(b_{2}\right) \in I$. This implies that $\left(a_{1}, 0\right)\left(a_{2}, b_{2}\right)=\left(a_{1} a_{2}+a_{1} \cdot \theta\left(b_{2}\right), 0\right) \in I \times\{0\}$. It is clear that I is a prime ideal in \mathcal{A} if and only if $I \times\{0\}$ is a prime ideal in $\mathcal{A} \times\{0\}$. So, we get either $\left(a_{1}, 0\right) \in I \times\{0\}$ or $\left(a_{2}, b_{2}\right) \in I \times\{0\}$. If $\left(a_{1}, 0\right) \in I \times\{0\}$ then $a_{1} \in I$ and so $\left(a_{1}, b_{1}\right) \in I \times J$. If $\left(a_{2}, b_{2}\right) \in I \times\{0\}$ then $a_{2} \in \mathcal{I}$ and $b_{2}=0 \in\{0\} \subseteq J$. So, $\left(a_{2}, b_{2}\right) \in I \times J$.

Case II: Let $b_{2} \in J$. Then $a_{1} \cdot \theta\left(b_{2}\right) \in I$ and so $a_{1} a_{2}+\theta\left(b_{1}\right) \circ a_{2} \in I$. This implies that $\left(a_{1}, b_{1}\right)\left(a_{2}, 0\right)=\left(a_{1} a_{2}+\theta\left(b_{1}\right) \circ a_{2}, 0\right) \in I \times\{0\}$. It follows from the above same argument that either $\left(a_{1}, b_{1}\right) \in I \times J$ or $\left(a_{2}, b_{2}\right) \in I \times J$.
2.2. Gelfand space of $\mathcal{A} \times_{\theta} \mathcal{B}$. Let \mathcal{A} be a commutative Banach algebra and \mathcal{A}^{*} be the dual of \mathcal{A}. A nonzero linear map $\varphi: \mathcal{A} \rightarrow \mathbb{C}$ is a complex homomorphism if $\varphi(a b)=\varphi(a) \varphi(b)$ for all $a, b \in \mathcal{A}$. Let $\Delta(\mathcal{A})$ be the set of all complex homomorphism on \mathcal{A}. Clearly, $\Delta(\mathcal{A}) \subseteq \mathcal{A}^{*}$. For $a \in \mathcal{A}$, let $\widehat{a}: \Delta(\mathcal{A}) \rightarrow \mathbb{C}$ be $\widehat{a}(\varphi)=\varphi(a)$ for all $\varphi \in \Delta(\mathcal{A})$. The weakest topology on $\Delta(\mathcal{A})$ in which all $\widehat{a}, a \in \mathcal{A}$, are continuous is the Gelfand topology on $\Delta(\mathcal{A})$. The set $\Delta(\mathcal{A})$ with the Gelfand topology is the Gelfand space of \mathcal{A}. Note that if $a \in \mathcal{A}$, then $\widehat{a} \in C_{0}(\Delta(\mathcal{A}))$, where $C_{0}(\Delta(\mathcal{A}))$ is the collection of all continuous functions on $\Delta(\mathcal{A})$ vanishing at infinity. The map
$a \in \mathcal{A} \mapsto \widehat{a} \in C_{0}(\Delta(\mathcal{A}))$ is the Gelfand map. A commutative Banach algebra \mathcal{A} is semisimple if the Gelfand map is injective.

Next theorem gives the Gelfand space of $\mathcal{A} \times{ }_{\theta} \mathcal{B}$.
Theorem 2.10. Let \mathcal{A}, \mathcal{B}, and \mathcal{X} be commutative Banach algebras, \mathcal{A} be a symmetric Banach \mathcal{X}-bimodule, and $\theta: \mathcal{B} \longrightarrow \mathcal{X}$ be an algebra homomorphism with $\|\theta\| \leq 1$. Then the Gelfand space $\Delta\left(\mathcal{A} \times_{\theta} \mathcal{B}\right)$ of $\mathcal{A} \times{ }_{\theta} \mathcal{B}$ is a disjoint union of the sets $E:=\left\{\left(\varphi, \varphi\left(a_{\varphi} \cdot \theta(\cdot)\right)\right): \varphi \in \Delta(\mathcal{A}), a_{\varphi} \in \mathcal{A}\right.$ such that $\left.\varphi\left(a_{\varphi}\right)=1\right\}$ and $F:=$ $\{(0, \psi): \psi \in \Delta(\mathcal{B})\}$.

Proof. Let $\Phi \in \Delta\left(\mathcal{A} \times{ }_{\theta} \mathcal{B}\right)$. Since $\Delta\left(\mathcal{A} \times{ }_{\theta} \mathcal{B}\right) \subseteq\left(\mathcal{A} \times{ }_{\theta} \mathcal{B}\right)^{*}$, there exist $\varphi \in \mathcal{A}^{*}$ and $\psi \in \mathcal{B}^{*}$ such that $\Phi=(\varphi, \psi)$. Let $\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right) \in \mathcal{A} \times{ }_{\theta} \mathcal{B}$. Then $(\varphi, \psi)\left[\left(a_{1}, b_{1}\right)\left(a_{2}, b_{2}\right)\right]=$ $(\varphi, \psi)\left(a_{1}, b_{1}\right)(\varphi, \psi)\left(a_{2}, b_{2}\right)$ or $(\varphi, \psi)\left(a_{1} a_{2}+a_{1} \cdot \theta\left(b_{2}\right)+\theta\left(b_{1}\right) \circ a_{2}, b_{1} b_{2}\right)=\left(\varphi\left(a_{1}\right)+\right.$ $\left.\psi\left(b_{1}\right)\right)\left(\varphi\left(a_{2}\right)+\psi\left(b_{2}\right)\right)$ or

$$
\begin{align*}
\varphi\left(a_{1} a_{2}+a_{1} \cdot \theta\left(b_{2}\right)+\theta\left(b_{1}\right) \circ a_{2}\right)+\psi\left(b_{1} b_{2}\right)= & \varphi\left(a_{1}\right) \varphi\left(a_{2}\right)+\varphi\left(a_{1}\right) \psi\left(b_{2}\right) \\
& +\psi\left(b_{1}\right) \varphi\left(a_{2}\right)+\psi\left(b_{1}\right) \psi\left(b_{2}\right) . \tag{5}
\end{align*}
$$

In particular, taking $b_{1}=b_{2}=0$ and $a_{1}=a_{2}=0$ in equation (5) respectively, we get $\varphi\left(a_{1} a_{2}\right)=\varphi\left(a_{1}\right) \varphi\left(a_{2}\right)$ and $\psi\left(b_{1} b_{2}\right)=\psi\left(b_{1}\right) \psi\left(b_{2}\right)$. The equation (5) gives

$$
\begin{equation*}
\varphi\left(a_{1} \cdot \theta\left(b_{2}\right)\right)+\varphi\left(\theta\left(b_{1}\right) \circ a_{2}\right)=\varphi\left(a_{1}\right) \psi\left(b_{2}\right)+\psi\left(b_{1}\right) \varphi\left(a_{2}\right) \tag{6}
\end{equation*}
$$

for all $\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right) \in \mathcal{A} \times{ }_{\theta} \mathcal{B}$. Let $\varphi \neq 0$. Then there exists $a_{\varphi} \in \mathcal{A}$ such that $\varphi\left(a_{\varphi}\right)=1$. Taking $a_{1}=a_{2}=a_{\varphi}$ and $b_{1}=b_{2}=b$ in equation (6), we get $\varphi\left(a_{\varphi} \cdot \theta(b)\right)=$ $\varphi\left(a_{\varphi}\right) \psi(b)$. Therefore, $\psi(\cdot)=\varphi\left(a_{\varphi} \cdot \theta(\cdot)\right)$. One can observe that $\psi(\cdot)$ is independent of the choice of a_{φ} satisfying $\varphi\left(a_{\varphi}\right)=1$. Indeed, let $a_{1}, a_{2} \in \mathcal{A}$ such that $\varphi\left(a_{1}\right)=$ $1=\varphi\left(a_{2}\right)$. Since \mathcal{A} is a symmetric \mathcal{X}-bimodule, we have $\left(a_{1} \cdot \theta(\cdot)\right) a_{2}=a_{1}\left(\theta(\cdot) \circ a_{2}\right)$ and so $\varphi\left(\left(a_{1} \cdot \theta(\cdot)\right) a_{2}\right)=\varphi\left(a_{1}\left(\theta(\cdot) \circ a_{2}\right)\right)$ or $\varphi\left(a_{1} \cdot \theta(\cdot)\right) \varphi\left(a_{2}\right)=\varphi\left(a_{1}\right) \varphi\left(\theta(\cdot) \circ a_{2}\right)$ or $\varphi\left(a_{1} \cdot \theta(\cdot)\right)=\varphi\left(\theta(\cdot) \circ a_{2}\right)$ for all $\varphi \in \Delta(\mathcal{A})$. Therefore, the map $\varphi\left(a_{\varphi} \cdot \theta(\cdot)\right)$ is welldefined. Since $\varphi\left(a_{\varphi}\right)=1$ and \mathcal{A} is symmetric, the map $\varphi\left(a_{\varphi} \cdot \theta(\cdot)\right)$ is multiplicative. Indeed,

$$
\begin{aligned}
\varphi\left(a_{\varphi} \cdot \theta\left(b_{1} b_{2}\right)\right) & =\varphi\left(a_{\varphi} \cdot\left(\theta\left(b_{1}\right) \theta\left(b_{2}\right)\right)\right)=\varphi\left(a_{\varphi} \cdot\left(\theta\left(b_{1}\right) \theta\left(b_{2}\right)\right)\right) \varphi\left(a_{\varphi}\right) \\
& =\varphi\left(\left(a_{\varphi} \cdot\left(\theta\left(b_{1}\right) \theta\left(b_{2}\right)\right)\right) a_{\varphi}\right)=\varphi\left(\left[\left(a_{\varphi} \cdot \theta\left(b_{1}\right)\right) \cdot \theta\left(b_{2}\right)\right] a_{\varphi}\right) \\
& =\varphi\left(\left[a_{\varphi} \cdot \theta\left(b_{1}\right)\right]\left[\theta\left(b_{2}\right) \circ a_{\varphi}\right]\right)=\varphi\left(a_{\varphi} \cdot \theta\left(b_{1}\right)\right) \varphi\left(\theta\left(b_{2}\right) \circ a_{\varphi}\right) \\
& =\varphi\left(a_{\varphi} \cdot \theta\left(b_{1}\right)\right) \varphi\left(a_{\varphi} \cdot \theta\left(b_{2}\right)\right)
\end{aligned}
$$

for all $b_{1}, b_{2} \in \mathcal{B}$. Therefore, $(\varphi, \psi) \in E$. Next, let $\varphi=0$. Then $\psi \in \Delta(\mathcal{B})$ and $(0, \psi) \in F$. Hence $\Delta\left(\mathcal{A} \times_{\theta} \mathcal{B}\right) \subseteq E \cup F$.

Conversely, let $\Phi \in E \cup F$. Then computation shows that $\Phi \in \Delta\left(\mathcal{A} \times{ }_{\theta} \mathcal{B}\right)$.
Corollary 2.11. Assume the hypothesis of Theorem 2.10. Then sets E and F are open and closed in $\Delta\left(\mathcal{A} \times_{\theta} \mathcal{B}\right)$ respectively.

Proof. Let $\left(\varphi, \varphi\left(\theta(\cdot) \circ a_{\varphi}\right)\right) \in E$. Since $\varphi \in \Delta(\mathcal{A})$, there exists $a_{0} \in \mathcal{A}$ such that $\varphi\left(a_{0}\right) \neq 0$. Take $\varepsilon=\frac{\left|\varphi\left(a_{0}\right)\right|}{4}$ and $U=U\left(\left(\varphi, \varphi\left(\theta(\cdot) \circ a_{\varphi}\right)\right),\left(a_{0}, 0\right), \varepsilon\right)$. Then U is a neighborhood of $\left(\varphi, \varphi\left(\theta(\cdot) \circ a_{\varphi}\right)\right)$ and

$$
\begin{aligned}
U & =\left\{\left(\varphi_{1}, \psi_{1}\right) \in \Delta\left(\mathcal{A} \times_{\theta} \mathcal{B}\right):\left|\left(\varphi_{1}, \psi_{1}\right)\left(\left(a_{0}, 0\right)\right)-\left(\varphi, \varphi\left(\theta(\cdot) \circ a_{\varphi}\right)\right)\left(\left(a_{0}, 0\right)\right)\right|<\varepsilon\right\} \\
& =\left\{\left(\varphi_{1}, \psi_{1}\right) \in \Delta\left(\mathcal{A} \times_{\theta} \mathcal{B}\right):\left|\varphi_{1}\left(a_{0}\right)-\varphi\left(a_{0}\right)\right|<\varepsilon\right\}
\end{aligned}
$$

If we take any point $(0, \psi) \in U$, then $4 \varepsilon=\left|\varphi\left(a_{0}\right)\right|<\varepsilon$, a contradiction. Therefore, $U \subset E$. Hence E is open in $\Delta\left(\mathcal{A} \times{ }_{\theta} \mathcal{B}\right)$ and so F is closed in $\Delta\left(\mathcal{A} \times{ }_{\theta} \mathcal{B}\right)$.

Corollary 2.12. Assume the hypothesis of Theorem 2.10. Then $\mathcal{A} \times{ }_{\theta} \mathcal{B}$ is semisimple if and only if both \mathcal{A} and \mathcal{B} are semisimple.

Proof. Let $\mathcal{A} \times{ }_{\theta} \mathcal{B}$ be semisimple. Let $a \in \mathcal{A}$ and $b \in \mathcal{B}$ satisfy $\widehat{a}=0$ and $\widehat{b}=0$, i.e., $\widehat{a}(\varphi)=0$ and $\widehat{b}(\psi)=0$ for all $\varphi \in \Delta(\mathcal{A})$ and $\psi \in \Delta(\mathcal{B})$. Then $\widehat{(a, 0)}(\Phi)=0$ and $\widehat{(0, b)}(\Phi)=0$ for all $\Phi \in \Delta\left(\mathcal{A} \times{ }_{\theta} \mathcal{B}\right)$. Since $\mathcal{A} \times{ }_{\theta} \mathcal{B}$ is semisimple, $a=b=0$.

Conversely, let \mathcal{A} and \mathcal{B} be semisimple. Let $(a, b) \in \mathcal{A} \times{ }_{\theta} \mathcal{B}$ be such that $\widehat{(a, b)}((\varphi, \psi))=0$ for all $(\varphi, \psi) \in \Delta\left(\mathcal{A} \times_{\theta} \mathcal{B}\right)$. In particular, taking $\varphi=0$, we get $\widehat{b}(\psi)=\widehat{(a, b)}((0, \psi))=0$. It follows from semisimplicity of \mathcal{B} that $b=0$, which implies that $\widehat{a}(\varphi)=\widehat{(a, 0)}((\varphi, \varphi(\theta(0) \circ a))=0$. The semisimplicity of \mathcal{A} implies that $a=0$.
2.3. Module multipliers of $\mathcal{A} \times{ }_{\theta} \mathcal{B}$. Let \mathcal{A}, X, and \mathcal{X} be Banach algebras, and let \mathcal{A} be an \mathcal{X}-bimodule. Then X is a Banach $\mathcal{A}-\mathcal{X}$-bimodule if X is a Banach A-bimodule as well as a Banach \mathcal{X}-bimodule which satisfies conditions $(a x) \alpha=a(x \alpha), x(\alpha a)=(x \alpha) a, \alpha(a x)=(\alpha a) x, \alpha(x a)=(\alpha x) a, x(a \alpha)=(x a) \alpha$, and $(a \alpha) x=a(\alpha x)$ for all $a \in \mathcal{A}, x \in X$, and $\alpha \in \mathcal{X}$. Let X be an \mathcal{A}-bimodule, and let $\operatorname{Ann}_{X}(\mathcal{A}):=\{x \in X: a x=0=x a$ for all $a \in \mathcal{A}\}$ be the annihilator of \mathcal{A} in X. A homomorphism $T: \mathcal{A} \rightarrow X$ is a module homomorphism if $T\left(a_{1} a_{2}\right)=T\left(a_{1}\right) a_{2}$ and $T\left(a_{1} a_{2}\right)=a_{1} T\left(a_{2}\right)$ for all $a_{1}, a_{2} \in \mathcal{A}$. Moreover, if $T\left(a_{1}\right) a_{2}=a_{1} T\left(a_{2}\right)$ for all $a_{1}, a_{2} \in \mathcal{A}$, then it is a module multiplier. Let $M(\mathcal{A}, X)$ be the set of all module multipliers from \mathcal{A} to X.

Let X be a Banach $\mathcal{A}-\mathcal{X}$-bimodule, Y be a Banach $\mathcal{B}-\mathcal{X}$-bimodule, and $\theta: \mathcal{B} \longrightarrow \mathcal{X}$ be a module homomorphism. Define module multiplications on $X \times$ Y as $\alpha(x, y)=(\alpha x, \alpha y),(x, y) \alpha=(x \alpha, y \alpha),(a, b)(x, y)=(a x+\theta(b) x, b y)$, and $(x, y)(a, b)=(x a+x \theta(b), y b)$, respectively, for all $\alpha \in \mathcal{X},(x, y) \in X \times Y$ and $(a, b) \in \mathcal{A} \times{ }_{\theta} \mathcal{B}$.

Lemma 2.13. Let \mathcal{A}, \mathcal{B}, and \mathcal{X} be Banach algebras, \mathcal{A} be a symmetric Banach \mathcal{X}-bimodule, \mathcal{B} be a Banach \mathcal{X}-bimodule, and let $\theta: \mathcal{B} \longrightarrow \mathcal{X}$ be a module homomorphism with $\|\theta\| \leq 1$. If X is a Banach $\mathcal{A}-\mathcal{X}$-bimodule and Y is a Banach $\mathcal{B}-\mathcal{X}$-bimodule, then $X \times Y$ is a Banach $\left(\mathcal{A} \times{ }_{\theta} \mathcal{B}\right)-\mathcal{X}$-bimodule with the above module multiplications.

Proof. We have X a Banach $\mathcal{A}-\mathcal{X}$-bimodule and Y a Banach $\mathcal{B}-\mathcal{X}$-bimodule with the module multiplication $(a, x) \in \mathcal{A} \times X \mapsto a x \in X,(x, a) \in X \times \mathcal{A} \mapsto x a \in X$, $(\alpha, x) \in \mathcal{X} \times X \mapsto \alpha x \in X,(x, \alpha) \in X \times \mathcal{X} \mapsto x \alpha \in X,(b, y) \in \mathcal{B} \times Y \mapsto b y \in Y$, $(y, b) \in Y \times \mathcal{B} \mapsto y b \in Y,(\alpha, y) \in \mathcal{X} \times Y \mapsto \alpha y \in Y$, and $(y, \alpha) \in Y \times \mathcal{X} \mapsto y \alpha \in Y$ for all $\alpha \in \mathcal{X}, x \in X, y \in Y, a \in \mathcal{A}$, and $b \in \mathcal{B}$. Define four mappings as below.
(1) $(\alpha,(x, y)) \in \mathcal{X} \times(X \times Y) \mapsto \alpha(x, y) \in(X \times Y)$,
(2) $((x, y), \alpha) \in(X \times Y) \times \mathcal{X} \mapsto(x, y) \alpha \in(X \times Y)$,
(3) $((a, b),(x, y)) \in\left(\mathcal{A} \times{ }_{\theta} \mathcal{B}\right) \times(X \times Y) \mapsto(a, b)(x, y) \in(X \times Y)$, and
(4) $((x, y),(a, b)) \in(X \times Y) \times\left(\mathcal{A} \times_{\theta} \mathcal{B}\right) \mapsto(x, y)(a, b) \in(X \times Y)$,
where module multiplications are defined as said in hypothesis. One may verify that $X \times Y$ together with above module multiplications satisfies all conditions to be $\left(\mathcal{A} \times{ }_{\theta} \mathcal{B}\right)-\mathcal{X}$-bimodule.

The following theorem gives characterization of module multipliers from $\mathcal{A} \times{ }_{\theta} \mathcal{B}$ to $X \times Y$.

Theorem 2.14. Let \mathcal{A}, \mathcal{B}, and \mathcal{X} be algebras, \mathcal{A} be an \mathcal{X}-bimodule, \mathcal{B} be an \mathcal{X}-bimodule, $\theta: \mathcal{B} \longrightarrow \mathcal{X}$ be a module homomorphism, X be a symmetric $\mathcal{A}-\mathcal{X}$ bimodule, Y be a \mathcal{B} - \mathcal{X}-bimodule with Ann $_{Y}(\mathcal{B})=\{0\}$, and let $T: \mathcal{A} \times{ }_{\theta} \mathcal{B} \longrightarrow X \times Y$ be a module homomorphism. Then $T \in M\left(\mathcal{A} \times_{\theta} \mathcal{B}, X \times Y\right)$ if and only if there exists module homomorphisms $T_{1}: \mathcal{A} \times_{\theta} \mathcal{B} \longrightarrow X$ and $T_{2}: \mathcal{A} \times_{\theta} \mathcal{B} \longrightarrow Y$ such that $T=\left(T_{1}, T_{2}\right),\left.T_{1}\right|_{\mathcal{A} \times\{0\}} \in M(\mathcal{A}, X),\left.T_{2}\right|_{\mathcal{A} \times\{0\}}=\{0\},\left.T_{2}\right|_{\{0\} \times \mathcal{B}} \in M(\mathcal{B}, Y)$, and $\theta\left(b_{1}\right) T_{1}\left(a_{2}, b_{2}\right)=T_{1}\left(0, b_{1}\right) a_{2}+T_{1}\left(0, b_{1}\right) \theta\left(b_{2}\right)$ for all $a_{2} \in \mathcal{A}$ and $b_{1}, b_{2} \in \mathcal{B}$.

Proof. Let $T \in M\left(\mathcal{A} \times{ }_{\theta} \mathcal{B}, X \times Y\right)$. Let $\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right) \in \mathcal{A} \times{ }_{\theta} \mathcal{B}$. Then $\left(T\left(a_{1}, b_{1}\right)\right)\left(a_{2}, b_{2}\right)$
$=\left(a_{1}, b_{1}\right)\left(T\left(a_{2}, b_{2}\right)\right)$ or $\left(T_{1}\left(a_{1}, b_{1}\right), T_{2}\left(a_{1}, b_{1}\right)\right)\left(a_{2}, b_{2}\right)=\left(a_{1}, b_{1}\right)\left(T_{1}\left(a_{2}, b_{2}\right), T_{2}\left(a_{2}, b_{2}\right)\right)$ or

$$
\begin{equation*}
T_{1}\left(a_{1}, b_{1}\right) a_{2}+T_{1}\left(a_{1}, b_{1}\right) \theta\left(b_{2}\right)=a_{1} T_{1}\left(a_{2}, b_{2}\right)+\theta\left(b_{1}\right) T_{1}\left(a_{2}, b_{2}\right) \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
T_{2}\left(a_{1}, b_{1}\right) b_{2}=b_{1} T_{2}\left(a_{2}, b_{2}\right) \tag{8}
\end{equation*}
$$

Taking $a_{1}=b_{2}=0$ in equations (7) and (8), we get $T_{1}\left(0, b_{1}\right) a_{2}=\theta\left(b_{1}\right) T_{1}\left(a_{2}, 0\right)$ and $b_{1} T_{2}\left(a_{2}, 0\right)=0$. Since $\operatorname{Ann}_{Y}(\mathcal{B})=\{0\}, T_{2}\left(a_{2}, 0\right)=0$ for all $a_{2} \in \mathcal{A}$, i.e., $\left.T_{2}\right|_{\mathcal{A} \times\{0\}}=$ $\{0\}$. Taking $b_{1}=b_{2}=0$ in equations (7) and (8), we get $T_{1}\left(a_{1}, 0\right) a_{2}=a_{1} T_{1}\left(a_{2}, 0\right)$ for all $a_{1}, a_{2} \in \mathcal{A}$, i.e., $\left.T_{1}\right|_{\mathcal{A} \times\{0\}} \in M(\mathcal{A}, X)$. Taking $a_{1}=a_{2}=0$ in equations (7) and (8), we get $T_{1}\left(0, b_{1}\right) \theta\left(b_{2}\right)=\theta\left(b_{1}\right) T_{1}\left(0, b_{2}\right)$ and $T_{2}\left(0, b_{1}\right) b_{2}=b_{1} T_{2}\left(0, b_{2}\right)$ for all $b_{1}, b_{2} \in \mathcal{B}$, i.e., $\left.T_{2}\right|_{\{0\} \times \mathcal{B}} \in M(\mathcal{B}, Y)$. One may observe that for all $a_{2} \in \mathcal{A}$ and $b_{1}, b_{2} \in \mathcal{B}$,

$$
\begin{aligned}
\theta\left(b_{1}\right) T_{1}\left(a_{2}, b_{2}\right) & =\theta\left(b_{1}\right)\left[T_{1}\left(a_{2}, 0\right)+T_{1}\left(0, b_{2}\right)\right] \\
& =\theta\left(b_{1}\right) T_{1}\left(a_{2}, 0\right)+\theta\left(b_{1}\right) T_{1}\left(0, b_{2}\right) \\
& =T_{1}\left(0, b_{1}\right) a_{2}+T_{1}\left(0, b_{1}\right) \theta\left(b_{2}\right)
\end{aligned}
$$

The converse can be verified easily.

Acknowledgment

The second author is thankful to the University Grants Commission (UGC), New Delhi, India [UGC-Ref.No.:1068/(OBC)(CSIR-UGC NET DEC. 2016)] for providing Junior Research Fellowship. The authors are thankful to the referees for a critical reading of the manu- script and fruitful suggestions.

References

[1] F. Abtahi, A. Ghafarpanah, and A. Rejali, Biprojectivity and biflatness of Lau product of Banach algebras defined by a Banach algebra morphism, Bull. Aust. Math. Soc., 91(1)(2015), 134-144.
[2] D. E. Bagha and H. Azaraien, Module amenability and module biprojectivity of θ-Lau Product of Banach algebras, J. Liner Top. Alg., 03(2014), 185-196.
[3] S. J. Bhatt and P. A. Dabhi, Arens regularity and amenability of Lau product of Banach algebras defined by a Banch algebra morphism, Bull. Aust. Math. Soc., 87(2013), 195-206.
[4] P. A. Dabhi and S. K. Patel, Spectral properties of the Lau product $\mathcal{A} \times{ }_{\theta} \mathcal{B}$ of Banach algebras, Ann. Funct. Anal., 9(2)(2018), 246-257.
[5] H. R. Ebrahimi Vishki and A. R. Khoddami, Character inner amenability of certain Banach algebras, Colloq. Math., 122(2)(2011), 225-232.
[6] E. Kaniuth, The Bochner-Schoenberg-Eberlein property and spectral synthesis for certain Banach algebra products, Canad. J. Math., 67(4)(2015), 827-847.
[7] A. T. Lau, Analysis on a class of Banach algebras with applications to harmonic analysis on locally compact groups and semigroups, Fund. Math., 118(3)(1983), 161-175.
[8] M. S. Monfared, On certain products of Banach algerbras with applications to harmonic analyisis, Studia Math., 178(2007), 277-294.
[9] M. S. Monfared, Character amenability of Banach algebras, Math. Proc. Cambridge Philos. Soc., 144(3)(2008), 697-706.
[10] M. Ramezanpour and S. Barootkoob, Generalized module extension Banach algebras: Derivation and Weak amenability, Quaest. Math., 40(4)(2017), 451-465.
${ }^{1}$ Department of Mathematics, Institute of Infrastructure Technology Research and Management (IITRAM), Ahmedabad - 380026, Gujarat, India

Email address: lightatinfinite@gmail.com, prakashdabhi@iitram.ac.in
${ }^{2}$ Department of Mathematics, Sardar Patel University, Vallabh Vidyanagar 388120, Gujarat, India, Current address: General Department, Government Polytechnic, Junagadh - 362263, Gujarat, India

Email address: pipaliya.yuvraj29@gmail.com, yuvrajpipaliya@spuvvn.edu,

[^0]: 2020 Mathematics Subject Classification. Primary: 46H05; Secondary: 46J20, 46H25.
 Key words and phrases. Module Lau - product of Banach algebras, ideals, Gelfand space, module multipliers
 *Corresponding author

 This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

