t-norms over fuzzy ideals (implicative, positive implicative) of $B C K$-algebras

Rasul Rasuli

Abstract

In this paper, we use the notion of t-norms to introduce fuzzy subalgebras, fuzzy ideals, fuzzy implicative ideals, fuzzy positive implicative ideals in $B C K$-algebras. Next we clarify the links between them and investigate properties of them. Finally, we consider them under intersection, cartesian product and homomorphisms(image and pre image) and we study related properties.

1. Introduction

In 1966, Imai and Iseki introduced the notion of $B C K$-algebra [4]. After the introduction of the concept of fuzzy sets by Zadeh [58], several researches were conducted on the generalization of the notion of fuzzy sets. Many authors considered the fuzzification of ideals and subalgebras in $B C K$-algebras $[2,6,8,9$, $11,12,13,16,59]$. Triangular norms and conorms are operations which generalize the logical conjunction and logical disjunction to fuzzy logic. The author by using norms, investigated some properties of fuzzy algebraic structures [17]-[56]. In this paper, as using t-norm T, we define fuzzy subalgebras, fuzzy ideals, fuzzy implicative ideals, fuzzy positive implicative ideals in $B C K$-algebras. Next we investigate them with subalgebras, ideals, implicative ideals, positive implicative ideals in $B C K$-algebras. Also we investigate them under intersection, cartesian product and homomorphisms(image and pre image) and we study related properties.

[^0]
2. Preliminaries

In this section we cite the fundamental definitions and results that will be used in the sequel. For more details we refer readers to $[1,3,5,7,10,14,15,16,31$, $35,57]$.

Definition 2.1. By a $B C K$-algebra we mean a nonempty set X with a binary operation $*$ and a constant 0 satisfying the axioms:
(1) $((x * y) *(x * z)) \leq(z * y)$,
(2) $(x *(x * y)) \leq y$,
(3) $x \leq x$,
(4) $x \leq y$ and $y \leq x$ imply that $x=y$,
(5) $0 \leq x$
for all $x, y, z \in X$.
A partial ordering \leq on X can be defined by $x \leq y$ if and only if $x * y=0$. In any $B C K$-algebra X the following holds:
(6) $x * 0=x$,
(7) $x * y \leq x$,
(8) $(x * y) * z=(x * z) * y$,
(9) $(x * z) *(y * z) \leq x * y$,
(10) $x *(x *(x * y))=x * y$,
(11) if $x \leq y$, then $x * z \leq y * z$ and $z * y \leq z * x$
for all $x, y, z \in X$.
Definition 2.2. A non-empty subset I of a $B C K$-algebra X is called subalgebra of X if $x * y \in I$ for all $x, y \in I$.

Definition 2.3. A $B C K$-algebra X is said to be implicative if $x=x *(y * x)$, for all $x, y \in X$.

Definition 2.4. A $B C K$-algebra X is said to be positive implicative if $(x * y) * z=$ $(x * z) *(y * z)$ for all $x, y, z \in X$.

Definition 2.5. A non-empty subset I of a $B C K$-algebra X is called an ideal of X if
(1) $0 \in I$,
(2) $x * y \in I$ and $y \in I$ imply that $x \in I$ for all $x, y \in X$.

Definition 2.6. A non-empty subset I of a $B C K$-algebra X is called an implicative ideal of X if
(1) $0 \in I$,
(2) $(x *(y * x)) * z \in I$ and $z \in I$ imply that $x \in I$ for all $x, y, z \in X$.

Definition 2.7. A non-empty subset I of a $B C K$-algebra X is called a positive implicative ideal of X if
(1) $0 \in I$,
(2) $(x * y) * z \in I$ and $y * z \in I$ imply that $x * z \in I$ for all $x, y, z \in X$.

Definition 2.8. A mapping $f: X \rightarrow Y$ of $B C K$-algebras is called a homomorphism if $f(x * y)=f(x) * f(y)$, for all $x, y \in X$.

Definition 2.9. Let X be an arbitrary set. A fuzzy subset of X, we mean a function from X into $[0,1]$. The set of all fuzzy subsets of X is called the $[0,1]$-power set of X and is denoted $[0,1]^{X}$. For a fixed $s \in[0,1]$, the set $\mu_{s}=\{x \in X: \mu(x) \geq s\}$ is called an upper level of μ.

Definition 2.10. Let φ be a function from set X into set Y such that $\mu \in[0,1]^{X}$ and $\nu \in[0,1]^{Y}$. For all $x \in X, y \in Y$, we define

$$
\varphi(\mu)(y)=\sup \{\mu(x) \mid x \in X, \varphi(x)=y\}
$$

and

$$
\varphi^{-1}(\nu)(x)=\nu(\varphi(x))
$$

Definition 2.11. A t-norm T is a function $T:[0,1] \times[0,1] \rightarrow[0,1]$ having the following four properties:
(T1) $T(x, 1)=x$ (neutral element),
(T2) $T(x, y) \leq T(x, z)$ if $y \leq z$ (monotonicity),
(T3) $T(x, y)=T(y, x)$ (commutativity),
(T4) $T(x, T(y, z))=T(T(x, y), z)$ (associativity),
for all $x, y, z \in[0,1]$.
It is clear that if $x_{1} \geq x_{2}$ and $y_{1} \geq y_{2}$, then $T\left(x_{1}, y_{1}\right) \geq T\left(x_{2}, y_{2}\right)$.
Example 2.12. (1) Standard intersection t-norm $T_{m}(x, y)=\min \{x, y\}$.
(2) Bounded sum t-norm $T_{b}(x, y)=\max \{0, x+y-1\}$.
(3) algebraic product t-norm $T_{p}(x, y)=x y$.
(4) Drastic t-norm

$$
T_{D}(x, y)= \begin{cases}y & \text { if } x=1 \\ x & \text { if } y=1 \\ 0 & \text { otherwise }\end{cases}
$$

(5) Nilpotent minimum t-norm

$$
T_{n M}(x, y)=\left\{\begin{aligned}
\min \{x, y\} & \text { if } x+y>1 \\
0 & \text { otherwise } .
\end{aligned}\right.
$$

(6) Hamacher product T-norm

$$
T_{H_{0}}(x, y)=\left\{\begin{aligned}
0 & \text { if } x=y=0 \\
\frac{x y}{x+y-x y} & \text { otherwise }
\end{aligned}\right.
$$

The drastic t-norm is the pointwise smallest t-norm and the minimum is the pointwise largest t-norm: $T_{D}(x, y) \leq T(x, y) \leq T_{\min }(x, y)$ for all $x, y \in[0,1]$.

We say that T be idempotent if for all $x \in[0,1]$ we have $T(x, x)=x$.
Definition 2.13. Let $\mu, \nu \in[0,1]^{X}$ and define the intersection of μ and ν is denoted by $\mu \cap \nu \in[0,1]^{X}$ as

$$
(\mu \cap \nu)(x)=T(\mu(x), \nu(x))
$$

for all $x \in X$.
Definition 2.14. Let $\mu \in[0,1]^{X}$ and $\nu \in[0,1]^{Y}$. Define the cartesian product of μ and ν is denoted by $\mu \times \nu \in[0,1]^{X \times Y}$ as

$$
(\mu \times \nu)(x, y)=T(\mu(x), \nu(y))
$$

for all $(x, y) \in X \times Y$.
Lemma 2.1. Let T be a t-norm. Then

$$
T(T(x, y), T(w, z))=T(T(x, w), T(y, z))
$$

for all $x, y, w, z \in[0,1]$.

3. Fuzzy subalgebras, ideals, positive implicative ideals of $B C K$-algebra under t-norms

Throughout this paper, X, Y always mean two $B C K$-algebras unless otherwise specified.

Definition 3.1. $\mu \in[0,1]^{X}$ is called a fuzzy subalgebra of X under t-norm T if

$$
\mu(x * y) \geq T\left(\mu_{A}(x), \mu_{A}(y)\right)
$$

for all $x, y \in X$. Denote by $F S T(X)$, the set of all fuzzy subalgebras of X under t-norm T.

Example 3.2. Let $X=\{0, a, b, c\}$ be a set given by the following Cayley table:

$*$	0	a	b	c
0	0	0	0	0
a	a	0	0	a
b	b	a	0	b
c	c	c	c	0

Then $(X, *, 0)$ is a $B C K$-algebra. Define the fuzzy subset $\mu:(X, *, 0) \rightarrow[0,1]$ as

$$
\mu(x)= \begin{cases}0.35 & \text { if } x=0, a, c \\ 0.25 & \text { if } x=b\end{cases}
$$

Let $T(a, b)=T_{p}(a, b)=a b$, for all $a, b \in[0,1]$ then $\mu \in F S T(X)$.

Proposition 3.1. Let $\mu \in[0,1]^{X}$ such that T be idempotent. Then $\mu \in \operatorname{FST}(X)$ if and only if the set $\mu_{s}=\{x \in X: \mu(x) \geq s\}$ is either empty or a subalgebra of X for every $s \in[0,1]$.

Proof. Let $\mu \in F S T(X)$ and $x, y \in \mu_{s}$. Then

$$
\mu(x * y) \geq T(\mu(x), \mu(y)) \geq T(s, s)=s
$$

thus $x * y \in \mu_{s}$ and so μ_{s} will be a subalgebra of X for every $s \in[0,1]$.
Conversely, let μ_{s} is either empty or a subalgebra of X for every $t \in[0,1]$. Let $s=T(\mu(x), \mu(y))$ and $x, y \in \mu_{s}$. As μ_{s} is a subalgebra of X so $x * y \in \mu_{s}$ and thus

$$
\mu(x * y) \geq s=T(\mu(x), \mu(y))
$$

so $\mu \in F S T(X)$.
Proposition 3.2. Let $\mu \in F S T(X)$ and T be idempotent. Then $\mu(0) \geq \mu(x)$ for all $x \in X$.

Proof. Let $x \in X$. Then

$$
\mu(0)=\mu(x * x) \geq T(\mu(x), \mu(x))=\mu(x)
$$

Thus $\mu(0) \geq \mu(x)$.
Definition 3.3. Define $\mu \in[0,1]^{X}$ is a fuzzy ideal of X under t-norm T if it satisfies the following inequalities:
(1) $\mu(0) \geq \mu(x)$,
(2) $\mu(x) \geq T(\mu(x * y), \mu(y))$,
for all $x, y \in X$.
Denote by $F I T(X)$, the set of all fuzzy ideals of X under t-norm T.
Example 3.4. Let $X=\{0,1,2,3,4\}$ be a set given by the following Cayley table:

$*$	0	1	2	3	4
0	0	0	0	0	0
1	1	0	1	0	0
2	2	2	0	0	0
3	3	3	3	0	0
4	4	3	4	1	0

Then $(X, *, 0)$ is a $B C K$-algebra. Define $\mu \in[0,1]^{X}$ as

$$
\mu(x)= \begin{cases}1 & \text { if } x=0,2 \\ t & \text { if } x=1,3,4\end{cases}
$$

such that $t \in[0,1]$. Let $T(a, b)=T_{p}(a, b)=a b$, for all $a, b \in[0,1]$, then $\mu \in F I T(X)$.
Proposition 3.3. Let $\mu \in[0,1]^{X}$ and T be idempotent. Then $\mu \in \operatorname{FIT}(X)$ if and only if the set $\mu_{s}=\{x \in X: \mu(x) \geq s\}$ is either empty or an ideal of X, for every $s \in[0,1]$.

Proof. Let $\mu \in F I T(X)$ and $x, y \in X$. Then $\mu(0) \geq \mu(x) \geq s$ and then $0 \in \mu_{s}$. Also let $x * y \in \mu_{s}$ and $y \in \mu_{s}$. Then

$$
\mu(x) \geq T(\mu(x * y), \mu(y)) \geq T(s, s)=s
$$

thus $x \in \mu_{s}$. Then μ_{s} will be an ideal of X for every $s \in[0,1]$.
Conversely, let μ_{s} is either empty or an ideal of X for every $s \in[0,1]$. Let $s=$ $T(\mu(x * y), \mu(y))$ with $x * y \in \mu_{s}$ and $y \in \mu_{s}$. Then $x \in \mu_{s}$ thus

$$
\mu(x) \geq s=T(\mu(x * y), \mu(y))
$$

so $\mu \in F I T(X)$.
Proposition 3.4. Let $\mu \in F I T(X)$ and $x * y \leq z$. Then $\mu(x) \geq T(\mu(y), \mu(z))$ for all $x, y, z \in X$.

Proof. As $x * y \leq z$ so $(x * y) * z=0$ for all $x, y, z \in X$. Then

$$
\begin{gathered}
\mu(x) \geq T(\mu(x * y), \mu(y)) \geq T(T(\mu((x * y) * z), \mu(z)), \mu(y)) \\
=T(T(\mu(0), \mu(z)), \mu(y))=T(\mu(z), \mu(y))=T(\mu(y), \mu(z))
\end{gathered}
$$

thus $\mu(x) \geq T(\mu(y), \mu(z))$.
Proposition 3.5. Let $\mu \in F I T(X)$ and $x \leq y$ for all $x, y \in X$. Then $\mu(x) \geq$ $\mu(y)$.

Proof. Since $x \leq y$ so $x * y=0$ for all $x, y \in X$. Then

$$
\mu(x) \geq T(\mu(x * y), \mu(y))=T(\mu(0), \mu(y))=\mu(y)
$$

therefore $\mu(x) \geq \mu(y)$.
In the following proposition every $\operatorname{FIT}(X)$ is $F S T(X)$.
Proposition 3.6. If $\mu \in F I T(X)$, then $\mu \in F S T(X)$.
Proof. As $x * y \leq x$ so from Proposition 3.9 we get that $\mu(x * y) \geq \mu(x)$. Now

$$
\mu(x * y) \geq \mu(x) \geq T(\mu(x * y), \mu(y)) \geq T(\mu(x), \mu(y))
$$

and then $\mu \in F S T(X)$.
Remark 3.5. The converse of Proposition 3.10 may not be true. For example in Example 3.2 we have that $\mu \in F S T(X)$ but since $\mu(b)=0.25 \nsupseteq T(\mu(b * a), \mu(a))=$ $T(\mu(a), \mu(a))=\mu(a)=0.35$ so $\mu \notin F I T(X)$.

Note that under a condition every $F S T(X)$ is $F I T(X)$.
Proposition 3.7. Let $\mu \in F S T(X)$. If $\mu(x) \geq T(\mu(y), \mu(z))$ and $x * y \leq z$ for all $x, y, z \in X$, then $\mu \in F I T(X)$.

Proof. As Proposition 3.4 we get that $\mu(0) \geq \mu(x)$. As $x *(x * y) \leq y$ so $\mu(x) \geq T(\mu(x * y), \mu(y))$. (From the hypothesis)
Then $\mu \in \operatorname{FIT}(X)$.
Definition 3.6. We say that $\mu \in[0,1]^{X}$ is a fuzzy implicative ideal of X under t-norm T if it satisfies the following inequalities:
(1) $\mu(0) \geq \mu(x)$,
(2) $\mu(x) \geq T(\mu(x *(y * x)), \mu(z))$,
for all $x, y, z \in X$.
Denote by $\operatorname{FIIT}(X)$, the set of all fuzzy implicative ideals of X under t-norm T.
Proposition 3.8. Let $\mu \in[0,1]^{X}$ and T be idempotent. Then $\mu \in \operatorname{FIIT}(X)$ if and only if the set $\mu_{s}=\{x \in X: \mu(x) \geq s\}$ is either empty or an implicative ideal of X for every $s \in[0,1]$.

Proof. Let $\mu \in \operatorname{FIIT}(X)$ and $x, y \in X$. Thus $\mu(0) \geq \mu(x) \geq s$ so $0 \in \mu_{s}$. Also let $(x *(y * x)) * z \in \mu_{s}$ and $z \in \mu_{s}$. Then

$$
\mu(x) \geq T(\mu((x *(y * x)) * z), \mu(z)) \geq T(s, s)=s
$$

thus $x \in \mu_{s}$. Then μ_{s} will be an implicative ideal of X for every $s \in[0,1]$.
Conversely, let μ_{s} is either empty or an implicative ideal of X for every $s \in[0,1]$. Let $s=T(\mu((x *(y * x)) * z), \mu(z))$ with $(x *(y * x)) * z \in \mu_{s}$ and $z \in \mu_{s}$. Then $x \in \mu_{s}$ thus

$$
\mu(x) \geq s=T(\mu((x *(y * x)) * z), \mu(z))
$$

so $\mu \in \operatorname{FIIT}(X)$.
Definition 3.7. Define $\mu \in[0,1]^{X}$ is a fuzzy positive implicative ideal of X under t-norm T if it satisfies the following inequalities:
(1) $\mu(0) \geq \mu(x)$,
(2) $\mu(x * z) \geq T(\mu((x * y) * z), \mu(y * z))$,
for all $x, y, z \in X$.
Denote by $\operatorname{FPIIT}(X)$, the set of all fuzzy positive implicative ideals of X under t-norm T.

Proposition 3.9. Let $\mu \in[0,1]^{X}$ and T be idempotent. Then $\mu \in \operatorname{FPIIT}(X)$ if and only if the set $\mu_{s}=\{x \in X: \mu(x) \geq s\}$ is either empty or a positive implicative ideal of X for every $s \in[0,1]$.

Proof. Let $\mu \in \operatorname{FPIIT}(X)$ and $x, y \in X$. Then $\mu(0) \geq \mu(x) \geq s$ and and then $0 \in \mu_{s}$.
Also let $(x * y) * z \in A_{s, t}$ and $y * z \in \mu_{s}$. Then

$$
\mu(x * z) \geq T(\mu((x * y) * z), \mu(y * z)) \geq T(s, s)=s
$$

thus $x \in \mu_{s}$. Then μ_{s} is a posive implicative ideal of X for every $s \in[0,1]$.
Conversely, let μ_{s} is either empty or a positive implicative ideal of X for every $s \in[0,1]$. Let $s=T(\mu((x * y) * z), \mu(y * z))$ with $(x * y) * z \in \mu_{s}$ and $y * z \in \mu_{s}$. Then $x \in \mu_{s}$ thus

$$
\mu(x) \geq s=T(\mu((x *(y * x)) * z), \mu(z))
$$

so $\mu \in F P I I T(X)$.
Proposition 3.10. Let $\mu \in F I T(X)$ such that

$$
\mu(x * y) \geq T(\mu(((x * y) * y) * z), \mu(z))
$$

for all $x, y, z \in X$. Then $\mu \in \operatorname{FPIIT}(X)$.
Proof. Let $x, y, z \in X$. As properties (8) and (9) of Definition 2.1 we get that

$$
((x * z) * z) *(y * z) \leq(x * z) * y=(x * y) * z
$$

and from Proposition 3.9 we give that

$$
\mu(((x * z) * z) *(y * z)) \geq \mu((x * y) * z)
$$

Now by hypothesis if we get $y=z$ and $z=y * z$ we obtain that

$$
\mu(x * z) \geq T(\mu(((x * z) * z) *(y * z)), \mu(y * z))
$$

Then

$$
\mu(x * z) \geq T(\mu(((x * z) * z) *(y * z)), \mu(y * z)) \geq T(\mu((x * y) * z), \mu(y * z)))
$$

Thus $\mu \in \operatorname{FPIIT}(X)$.
Proposition 3.11. Let $\mu \in F I T(X)$. Then $\mu \in \operatorname{FPIIT}(X)$ if and only if

$$
\mu((x * z) *(y * z)) \geq \mu((x * y) * z)
$$

for all $x, y, z \in X$.
Proof. Let

$$
\mu((x * z) *(y * z)) \geq \mu((x * y) * z)
$$

for all $x, y, z \in X$. As properties (9) of Definition 2.1 we get that $(x * z) *(y * z) \leq x * y$ and from Proposition 3.8 we get that

$$
\begin{aligned}
& \mu(x * z) \geq T(\mu(y * z), \mu(x * y)) \geq T(\mu(y * z), \mu((x * z) *(y * z))) \\
& \quad=T(\mu((x * z) *(y * z)), \mu(y * z)) \geq T(\mu((x * y) * z), \mu(y * z))
\end{aligned}
$$

Therefore

$$
\mu(x * z) \geq T(\mu((x * y) * z), \mu(y * z))
$$

thus $\mu \in \operatorname{FPIIT}(X)$.
Conversely, let $\mu \in \operatorname{FPIIT}(X)$ and $x, y, z \in X$ with $a=x *(y * z)$ and $b=x * y$. By property (1) of Definition 2.1 we will have that $((x *(y * z)) *(x * y)) \leq y *(y * z)$ and thus $((x *(y * z)) *(x * y)) * z \leq y *(y * z) * z=0$ (Definition 2.1 property
(1)) and Proposition 3.9 gives us that $\mu(((x *(y * z)) *(x * y)) * z) \geq \mu(0)$. Then $\mu((a * b) * z)=\mu((x *(y * z) * x * y) * z) \geq \mu(0)$. Now

$$
\begin{gathered}
\mu((x * z) *(y * z))=\mu(x *(y * z) * z)=\mu(a * z) \geq T(\mu((a * b) * z), \mu(b * z)) \\
\geq T(\mu(0), \mu(b * z))=\mu(b * z)=\mu((x * y) * z)
\end{gathered}
$$

Thus $\mu((x * z) *(y * z)) \geq \mu((x * y) * z)$ for all $x, y, z \in X$.
Proposition 3.12. Let $\mu \in F P I I T(X)$ and $x, y, z, a, b \in X$.
(1) If $((x * y) * y) * a \leq b$, then

$$
\mu(x * y) \geq T(\mu(a), \mu(b)) .
$$

(2) If $((x * y) * z) * a \leq b$, then

$$
\mu((x * z) *(y * z)) \geq T(\mu(a), \mu(b))
$$

Proof. Let $\mu \in \operatorname{FPIIT}(X)$ and $x, y, z, a, b \in X$.
(1) Let $((x * y) * y) * a \leq b$ then from Proposition 3.8 we get that $\mu((x * y) * y) \geq$ $T(\mu(a), \mu(b))$. Thus

$$
\begin{gathered}
\mu(x * y) \geq T(\mu((x * y) * y), \mu(y * y))=T(\mu((x * y) * y), \mu(0)) \\
=\mu((x * y) * y) \geq T(\mu(a), \mu(b))
\end{gathered}
$$

then

$$
\mu(x * y) \geq T(\mu(a), \mu(b))
$$

(2) Let $((x * y) * z) * a \leq b$, so from Proposition 3.8 we get that

$$
\mu((x * z) *(y * z)) \geq \mu((x * y) * z) \geq T(\mu(a), \mu(b))
$$

Proposition 3.13. Let $\mu \in[0,1]^{X}$ and $((x * y) * y) * a \leq b$ for all $x, y, a, b \in X$. If $\mu(x * y) \geq T(\mu(a), \mu(b))$, then $\mu \in F P I I T(X)$.

Proof. First, we prove that $\mu \in F I T(X)$. Let $x, y, z \in X$ such that $x * y \leq z$. Definition 2.1 and Properties (1) give us that $((x * 0) * 0) * y * z=(x * y) * z=0$ thus $((x * 0) * 0) * y \leq z$. Put $y=0, a=y, b=z$ in hypothesis then $\mu(x)=$ $\mu(x * 0) \geq T(\mu(y), \mu(z))$. Thus from Proposition 3.12 we get that $\mu \in F I T(X)$. As $(((x * y) * y) *((x * y) * y)) * 0=0$ so $(((x * y) * y) *((x * y) * y)) \leq 0$ for all $x, y \in X$. Using hypothesis will give us $\mu(x * y) \geq T(\mu((x * y) * y), \mu(0))=\mu((x * y) * y)$. Therefore $\mu \in F P I I T(X)$.

Proposition 3.14. Let $\mu \in[0,1]^{X}$ and $((x * y) * z) * a \leq b$ for all $x, y, z, a, b \in X$. If

$$
\mu((x * y) *(y * z)) \geq T(\mu(a), \mu(b))
$$

then $\mu \in \operatorname{FPIIT}(X)$.

Proof. Let $((x * y) * z) * a \leq b$ for all $x, y, z, a, b \in X$. Then $(((x * y) * z) * a) * b=0$. Now

$$
\mu(x * y)=\mu((x * y) * 0)=\mu((x * y) *(y * y)) \geq T(\mu(a), \mu(b))
$$

and as Proposition 3.20 we will have that $\mu \in \operatorname{FPIT}(X)$.

4. Intersection, cartesian product and homomorphism

Proposition 4.1. Let $\mu, \nu \in F S T(X)$. Then $\mu \cap \nu \in F S T(X)$.
Proof. Let $x, y \in X$. Then

$$
\begin{gathered}
(\mu \cap \nu)(x * y)=T(\mu(x * y), \nu(x * y)) \geq T(T(\mu(x), \mu(y)), T(\nu(x), \nu(y))) \\
=T(T(\mu(x), \nu(x)), T(\mu(y), \nu(y)))=T((\mu \cap \nu)(x),(\mu \cap \nu)(y))
\end{gathered}
$$

thus

$$
(\mu \cap \nu)(x * y) \geq T((\mu \cap \nu)(x),(\mu \cap \nu)(y))
$$

Thus $\mu \cap \nu \in F S T(X)$.
Proposition 4.2. Let $\mu, \nu \in F I T(X)$. Then $\mu \cap \nu \in F I T(X)$.
Proof. Let $x, y \in X$. Then

$$
\begin{equation*}
(\mu \cap \nu)(0)=T(\mu(0), \nu(0)) \geq T(\mu(x), \nu(x))=(\mu \cap \nu)(x) \tag{1}
\end{equation*}
$$

thus

$$
\begin{gathered}
(\mu \cap \nu)(0) \geq(\mu \cap \nu)(x) \\
(\mu \cap \nu)(x)=T(\mu(x), \nu(x)) \geq T(T(\mu(x * y), \mu(y)), T(\nu(x * y), \nu(y))) \\
=T(T(\mu(x * y), \nu(x * y)), T(\mu(y), \nu(y)))(\text { Lemma 2.15 }) \\
=T((\mu \cap \nu)(x * y),(\mu \cap \nu)(y))
\end{gathered}
$$

so

$$
(\mu \cap \nu)(x) \geq T((\mu \cap \nu)(x * y),(\mu \cap \nu)(y))
$$

Then $\mu \cap \nu \in \operatorname{FIT}(X)$.
Proposition 4.3. If $\mu, \nu \in F I I T(X)$, then $\mu \cap \nu \in F I I T(X)$.
Proof. Let $x, y, z \in X$. Then

$$
\begin{equation*}
(\mu \cap \nu)(0)=T(\mu(0), \nu(0)) \geq T(\mu(x), \nu(x))=(\mu \cap \nu)(x) \tag{1}
\end{equation*}
$$

thus

$$
\begin{equation*}
(\mu \cap \nu)(0) \geq(\mu \cap \nu)(x) \tag{2}
\end{equation*}
$$

$(\mu \cap \nu)(x)=T\left(\mu(x), \nu_{B}(x)\right) \geq T(T(\mu((x *(y * x)) * z), \mu(z)), T(\nu((x *(y * x)) * z), \nu(z)))$

$$
\begin{gathered}
=T(T(\mu((x *(y * x)) * z), \nu((x *(y * x)) * z), T(\mu(z), \nu(z)))(\text { Lemma 2.15) } \\
=T((\mu \cap \nu)((x *(y * x)) * z)),(\mu \cap \nu)(z))
\end{gathered}
$$

SO

$$
(\mu \cap \nu)(x) \geq T((\mu \cap \nu)((x *(y * x)) * z)),(\mu \cap \nu)(z))
$$

Then $\mu \cap \nu \in \operatorname{FIIT}(X)$.
Proposition 4.4. Let $\mu, \nu \in \operatorname{FPIIT}(X)$. Then $\mu \cap \nu \in \operatorname{FPIIT}(X)$.
Proof. Let $x, y, z \in X$. Then

$$
\begin{equation*}
(\mu \cap \nu)(0)=T(\mu(0), \nu(0)) \geq T(\mu(x), \nu(x))=(\mu \cap \nu)(x) \tag{1}
\end{equation*}
$$

thus

$$
\begin{equation*}
(\mu \cap \nu)(0) \geq(\mu \cap \nu)(x) \tag{2}
\end{equation*}
$$

$$
\begin{gathered}
(\mu \cap \nu)(x * z)=T(\mu(x * z), \nu(x * z)) \geq T(T(\mu((x * y) * z), \mu(y * z)), T(\nu((x * y) * z), \nu(y * z))) \\
=T(T(\nu((x * y) * z), \nu((x * y) * z)), T(\mu(y * z), \nu(y * z)))(\text { Lemma 2.15 }) \\
=T((\mu \cap \nu)((x * y) * z)),(\mu \cap \nu)(y * z))
\end{gathered}
$$

so

$$
(\mu \cap \nu)(x * z) \geq T((\mu \cap \nu)((x * y) * z))),(\mu \cap \nu)(y * z)) .
$$

Therefore $\mu \cap \nu \in \operatorname{FPIIT}(X)$.
Proposition 4.5. Let $\mu \in F S T(X)$ and $\nu \in F S T(Y)$. Then $\mu \times \nu \in F S T(X \times$ $Y)$.

Proof. Let $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in X \times Y$. Then

$$
\begin{gathered}
(\mu \times \nu)\left(\left(x_{1}, y_{1}\right) *\left(x_{2}, y_{2}\right)\right)=(\mu \times \nu)\left(x_{1} * x_{2}, y_{1} * y_{2}\right) \\
=T\left(\mu\left(x_{1} * x_{2}\right), \nu\left(y_{1} * y_{2}\right)\right) \geq T\left(T\left(\mu\left(x_{1}\right), \mu\left(x_{2}\right)\right), T\left(\nu\left(y_{1}\right), \nu\left(y_{2}\right)\right)\right) \\
\left.=T\left(T\left(\mu\left(x_{1}\right), \nu\right)\left(y_{1}\right)\right), T\left(\mu\left(x_{2}\right), \nu\left(y_{2}\right)\right)\right)(\text { Lemma 2.15 }) \\
=T\left((\mu \times \nu)\left(x_{1}, y_{1}\right),(\mu \times \nu)\left(x_{2}, y_{2}\right)\right)
\end{gathered}
$$

thus

$$
(\mu \times \nu)\left(\left(x_{1}, y_{1}\right) *\left(x_{2}, y_{2}\right)\right) \geq T\left((\mu \times \nu)\left(x_{1}, y_{1}\right),(\mu \times \nu)\left(x_{2}, y_{2}\right)\right)
$$

Therefore $\mu \times \nu \in F S T(X \times Y)$.
Proposition 4.6. Let $\mu \in F I T(X)$ and $\nu \in F I T(Y)$. Then $\mu \times \nu \in F I T(X \times Y)$.

Proof. Let $(x, y) \in X \times Y$. Then

$$
(\mu \times \nu)(0,0)=T(\mu(0), \nu(0)) \geq T(\mu(x), \nu(y))=(\mu \times \nu)(x, y)
$$

thus $(\mu \times \nu)(0,0) \geq(\mu \times \nu)(x, y)$.
Also let $x_{i} \in X$ and $y_{i} \in Y$ for $i=1,2$. Now

$$
\begin{gathered}
(\mu \times \nu)\left(x_{1}, y_{1}\right)=T\left(\mu\left(x_{1}\right), \nu\left(y_{1}\right)\right) \geq T\left(T\left(\mu\left(x_{1} * x_{2}\right), \mu\left(x_{2}\right)\right), T\left(\nu\left(y_{1} * y_{2}\right), \nu\left(y_{2}\right)\right)\right) \\
=T\left(T\left(\mu\left(x_{1} * x_{2}\right), \nu\left(y_{1} * y_{2}\right)\right), T\left(\mu\left(x_{2}\right), \nu\left(y_{2}\right)\right)\right)(\text { Lemma 2.15 }) \\
=T\left((\mu \times \nu)\left(x_{1} * x_{2}, y_{1} * y_{2}\right),(\mu \times \nu)\left(x_{2}, y_{2}\right)\right)=T\left((\mu \times \nu)\left(\left(x_{1}, y_{1}\right) *\left(x_{2}, y_{2}\right)\right),(\mu \times \nu)\left(x_{2}, y_{2}\right)\right)
\end{gathered}
$$ thus

$$
(\mu \times \nu)\left(x_{1}, y_{1}\right) \geq T\left((\mu \times \nu)\left(\left(x_{1}, y_{1}\right) *\left(x_{2}, y_{2}\right)\right),(\mu \times \nu)\left(x_{2}, y_{2}\right)\right) .
$$

Therefore $\mu \times \nu \in F I T(X \times Y)$.
Proposition 4.7. Let $\mu \in F I I T(X)$ and $\nu \in F I I T(Y)$. Then $\mu \times \nu \in F I I T(X \times$ $Y)$.

Proof. Let $(x, y) \in X \times Y$. Then

$$
(\mu \times \nu)(0,0)=T(\mu(0), \nu(0)) \geq T(\mu(x), \nu(y))=(\mu \times \nu)(x, y) .
$$

Thus $(\mu \times \nu)(0,0) \geq(\mu \times \nu)(x, y)$.
Also let $x_{i} \in X$ and $y_{i} \in Y$ for $i=1,2,3$. Now

$$
\begin{aligned}
&(\mu \times \nu)\left(x_{1}, y_{1}\right)=T\left(\mu\left(x_{1}\right), \nu\left(y_{1}\right)\right) \geq T\left(T\left(\mu\left(x_{1} *\left(x_{2} * x_{1}\right)\right), \mu\left(x_{3}\right)\right), T\left(\nu\left(y_{1} *\left(y_{2} * y_{1}\right)\right), \nu\left(y_{3}\right)\right)\right) \\
&=T\left(T\left(\mu\left(x_{1} *\left(x_{2} * x_{1}\right)\right), \nu\left(y_{1} *\left(y_{2} * y_{1}\right)\right)\right), T\left(\mu\left(x_{3}\right), \nu\left(y_{3}\right)\right)\right)(\text { Lemma 2.15 }) \\
&= T\left((\mu \times \nu)\left(x_{1} *\left(x_{2} * x_{1}\right), y_{1} *\left(y_{2} * y_{1}\right)\right),(\mu \times \nu)\left(x_{3}, y_{3}\right)\right) \\
&= T\left((\mu \times \nu)\left(\left(x_{1}, y_{1}\right) *\left(\left(x_{2}, y_{2}\right) *\left(x_{1}, y_{1}\right)\right),(\mu \times \nu)\left(x_{3}, y_{3}\right)\right)\right.
\end{aligned}
$$

thus

$$
(\mu \times \nu)\left(x_{1}, y_{1}\right) \geq T\left((\mu \times \nu)\left(\left(x_{1}, y_{1}\right) *\left(\left(x_{2}, y_{2}\right) *\left(x_{1}, y_{1}\right)\right),(\mu \times \nu)\left(x_{3}, y_{3}\right)\right) .\right.
$$

Then $\mu \times \nu \in \operatorname{FIIT}(X \times Y)$.
Proposition 4.8. Let $\mu \in \operatorname{FPIIT}(X)$ and $\nu \in \operatorname{FPIIT}(Y)$. Then $\mu \times \nu \in$ $\operatorname{FPIIT}(X \times Y)$.

Proof. Let $(x, y) \in X \times Y$. Then

$$
(\mu \times \nu)(0,0)=T(\mu(0), \nu(0)) \geq T(\mu(x), \nu(y))=(\mu \times \nu)(x, y)
$$

thus $(\mu \times \nu)(0,0) \geq(\mu \times \nu)(x, y)$.
Also let $x_{i} \in X$ and $y_{i} \in Y$ for $i=1,2,3$. Then

$$
\begin{aligned}
& (\mu \times \nu)\left(\left(x_{1}, y_{1}\right) *\left(x_{3}, y_{3}\right)\right)=(\mu \times \nu)\left(x_{1} * x_{3}, y_{1} * y_{3}\right)=T\left(\mu\left(x_{1} * x_{3}\right), \nu\left(y_{1} * y_{3}\right)\right) \\
& \quad \geq T\left(T\left(\mu\left(\left(x_{1} * x_{2}\right) * x_{3}\right), \mu\left(x_{2} * x_{3}\right)\right), T\left(\nu\left(\left(y_{1} * y_{2}\right) * y_{3}\right), \nu\left(y_{2} * y_{3}\right)\right)\right) \\
& =T\left(T\left(\mu\left(\left(x_{1} * x_{2}\right) * x_{3}\right), \nu\left(\left(y_{1} * y_{2}\right) * y_{3}\right)\right), T\left(\mu\left(x_{2} * x_{3}\right), \nu\left(y_{2} * y_{3}\right)\right)\right)(\text { Lemma 2.15 })
\end{aligned}
$$

$$
\begin{aligned}
& =T\left((\mu \times \nu)\left(\left(x_{1} * x_{2}\right) * x_{3},\left(y_{1} * y_{2}\right) * y_{3}\right),(\mu \times \nu)\left(x_{2} * x_{3}, y_{2} * y_{3}\right)\right) \\
& \left.=T\left((\mu \times \nu)\left(\left(x_{1}, y_{1}\right) *\left(x_{2}, y_{2}\right)\right) *\left(x_{3}, y_{3}\right)\right),(\mu \times \nu)\left(\left(x_{2}, y_{2}\right) *\left(x_{3}, y_{3}\right)\right)\right)
\end{aligned}
$$

and so
$\left.(\mu \times \nu)\left(\left(x_{1}, y_{1}\right) *\left(x_{3}, y_{3}\right)\right) \geq T\left((\mu \times \nu)\left(\left(x_{1}, y_{1}\right) *\left(x_{2}, y_{2}\right)\right) *\left(x_{3}, y_{3}\right)\right),(\mu \times \nu)\left(\left(x_{2}, y_{2}\right) *\left(x_{3}, y_{3}\right)\right)\right)$.
Then $\mu \times \nu \in F P I I T(X \times Y)$.
Proposition 4.9. If $\mu \in F S T(X)$ and $\varphi: X \rightarrow Y$ be a homomorphism of $B C K$-algebras, then $\varphi(\mu) \in F S T(Y)$.

Proof. Let $y_{1}, y_{2} \in Y$ and $x_{1}, x_{2} \in X$ such that $\varphi\left(x_{1}\right)=y_{1}$ and $\varphi\left(x_{2}\right)=y_{2}$. Then

$$
\begin{gathered}
\varphi(\mu)\left(y_{1} * y_{2}\right)=\sup \left\{\mu\left(x_{1} * x_{2}\right) \mid x_{1}, x_{2} \in X, \varphi\left(x_{1}\right)=y_{1}, \varphi\left(x_{2}\right)=y_{2}\right\} \\
\geq \sup \left\{T\left(\mu\left(x_{1}\right), \mu\left(x_{2}\right) \mid x_{1}, x_{2} \in X, \varphi\left(x_{1}\right)=y_{1}, \varphi\left(x_{2}\right)=y_{2}\right\}\right. \\
=T\left(\sup \left\{\mu\left(x_{1}\right) \mid x_{1} \in X, \varphi\left(x_{1}\right)=y_{1}\right\}, \sup \left\{\mu\left(x_{2}\right) \mid x_{2} \in X, \varphi\left(x_{2}\right)=y_{2}\right\}\right) \\
\left.=T\left(\varphi(\mu)\left(y_{1}\right)\right), \varphi(\mu)\left(y_{2}\right)\right)
\end{gathered}
$$

thus

$$
\left.\varphi(\mu)\left(y_{1} * y_{2}\right) \geq T\left(\varphi(\mu)\left(y_{1}\right)\right), \varphi(\mu)\left(y_{2}\right)\right)
$$

Thus $\varphi(\mu) \in F S T(Y)$.
Proposition 4.10. If $\nu \in F S T(Y)$ and $\varphi: X \rightarrow Y$ be a homomorphism of $B C K$-algebras, then $\varphi^{-1}(\nu) \in F S T(X)$.

Proof. Let $x_{1}, x_{2} \in X$. Then

$$
\begin{gathered}
\varphi^{-1}(\nu)\left(x_{1} * x_{2}\right)=\nu\left(\varphi\left(x_{1} * x_{2}\right)\right)=\nu\left(\varphi\left(x_{1}\right) * \varphi\left(x_{2}\right)\right) \\
\geq T\left(\nu\left(\varphi\left(x_{1}\right)\right), \nu\left(\varphi\left(x_{2}\right)\right)\right)=T\left(\varphi^{-1}(\nu)\left(x_{1}\right), \varphi^{-1}(\nu)\left(x_{2}\right)\right)
\end{gathered}
$$

thus

$$
\varphi^{-1}(\nu)\left(x_{1} * x_{2}\right) \geq T\left(\varphi^{-1}(\nu)\left(x_{1}\right), \varphi^{-1}(\nu)\left(x_{2}\right)\right)
$$

Then $\varphi^{-1}(\nu) \in F S T(X)$.
Proposition 4.11. If $\mu \in F I T(X)$ and $\varphi: X \rightarrow Y$ is a homomorphism of $B C K$-algebras, then $\varphi(\mu) \in F I T(Y)$.

Proof. Let $x \in X$ and $y \in Y$ with $\varphi(x)=y$. Now

$$
\varphi(\mu)(0)=\sup \{\mu(0) \mid 0 \in X, \varphi(0)=0\} \geq \sup \{\mu(x) \mid x \in X, \varphi(x)=y\}=\varphi(\mu)(y)
$$

thus

$$
\varphi(\mu)(0) \geq \varphi(\mu)(y)
$$

Also let $x, x_{1} \in X$ such that $\varphi(x)=y, \varphi\left(x_{1}\right)=y_{1}$. Then

$$
\varphi(\mu)(y)=\sup \{\mu(x) \mid x \in X, \varphi(x)=y\}
$$

$$
\begin{gathered}
\geq \sup \left\{T\left(\mu\left(x * x_{1}\right), \mu\left(x_{1}\right)\right) \mid x, x_{1} \in X, \varphi(x)=y, \varphi\left(x_{1}\right)=y_{1}\right\} \\
=T\left(\sup \left\{\mu\left(x * x_{1}\right) \mid x, x_{1} \in X, \varphi(x)=y, \varphi\left(x_{1}\right)=y_{1}\right\}, \sup \left\{\mu\left(x_{1}\right) \mid x_{1} \in X, \varphi\left(x_{1}\right)=y_{1}\right\}\right) \\
=T\left(\sup \left\{\mu\left(x * x_{1}\right) \mid x, x_{1} \in X, \varphi\left(x * x_{1}\right)=y * y_{1}\right\}, \sup \left\{\mu\left(x_{1}\right) \mid x_{1} \in X, \varphi\left(x_{1}\right)=y_{1}\right\}\right. \\
=T\left(\varphi(\mu)\left(y * y_{1}\right), \varphi(\mu)\left(y_{1}\right)\right)
\end{gathered}
$$

therefore

$$
\varphi(\mu)(y) \geq T\left(\varphi(\mu)\left(y * y_{1}\right), \varphi(\mu)\left(y_{1}\right)\right) .
$$

Thus $\varphi(\mu) \in F I T(Y)$.
Proposition 4.12. If $\nu \in F I T(Y)$ and $\varphi: X \rightarrow Y$ be a homomorphism of $B C K$-algebras, then $\varphi^{-1}(\nu) \in F I T(X)$.

Proof. Let $x \in X$. Then

$$
\varphi^{-1}(\nu)(0)=\nu(\varphi(0)) \geq \nu(\varphi(x))=\varphi^{-1}(\nu)(x)
$$

Let $x, x_{1} \in X$. As

$$
\begin{gathered}
\varphi^{-1}(\nu)(x)=\nu(\varphi(x)) \geq T\left(\nu\left(\varphi(x) * \varphi\left(x_{1}\right)\right), \nu\left(\varphi\left(x_{1}\right)\right)\right) \\
=T\left(\nu\left(\varphi\left(x * x_{1}\right)\right), \nu\left(\varphi\left(x_{1}\right)\right)\right)=T\left(\varphi^{-1}(\nu)\left(x * x_{1}\right), \varphi^{-1}(\nu)\left(x_{1}\right)\right)
\end{gathered}
$$

so

$$
\varphi^{-1}(\nu)(x) \geq T\left(\varphi^{-1}(\nu)\left(x * x_{1}\right), \varphi^{-1}(\nu)\left(x_{1}\right)\right)
$$

Then $\varphi^{-1}(\nu) \in F I T(X)$.
Proposition 4.13. If $\mu \in F I I T(X)$ and $\varphi: X \rightarrow Y$ is a homomorphism of $B C K$-algebras, then $\varphi(\mu) \in \operatorname{FIIT}(Y)$.

Proof. Let $x \in X$ and $y \in Y$ with $\varphi(x)=y$. Now

$$
\varphi(\mu)(0)=\sup \{\mu(0) \mid 0 \in X, \varphi(0)=0\} \geq \sup \{\mu(x) \mid x \in X, \varphi(x)=y\}=\varphi(\mu)(y)
$$

thus $\varphi(\mu)(0) \geq \varphi(\mu)(y)$.
Also let $x, x_{1}, x_{2} \in X$ such that $\varphi(x)=y, \varphi\left(x_{1}\right)=y_{1}, \varphi\left(x_{2}\right)=y_{2}$. Then

$$
\begin{gathered}
\varphi(\mu)(y)=\sup \{\mu(x) \mid x \in X, \varphi(x)=y\} \\
\geq \sup \left\{T\left(\mu\left(x *\left(x_{1} * x\right)\right), \mu\left(x_{2}\right)\right) \mid x, x_{1}, x_{2} \in X, \varphi(x)=y, \varphi\left(x_{1}\right)=y_{1}, \varphi\left(x_{2}\right)=y_{2}\right\} \\
=T\left(\sup \left\{\mu\left(x *\left(x_{1} * x\right)\right) \mid x, x_{1} \in X, \varphi(x)=y, \varphi\left(x_{1}\right)=y_{1}\right\}, \sup \left\{\mu\left(x_{2}\right) \mid x_{2} \in X, \varphi\left(x_{2}\right)=y_{2}\right\}\right) \\
=T\left(\sup \left\{\mu\left(x *\left(x_{1} * x\right)\right) \mid x, x_{1} \in X, \varphi\left(x *\left(x_{1} * x\right)\right)=y *\left(y_{1} * y\right)\right\}, \sup \left\{\mu\left(x_{2}\right) \mid x_{2} \in X, \varphi\left(x_{2}\right)=y_{2}\right\}\right. \\
=T\left(\varphi(\mu)\left(y *\left(y_{1} * y\right)\right), \varphi(\mu)\left(y_{2}\right)\right) .
\end{gathered}
$$

Therefore

$$
\varphi(\mu)(y) \geq T\left(\varphi(\mu)\left(y *\left(y_{1} * y\right)\right), \varphi(\mu)\left(y_{2}\right)\right)
$$

Therefore $\varphi(\mu) \in \operatorname{FIIT}(Y)$.
Proposition 4.14. If $\nu \in \operatorname{FIIT}(Y)$ and $\varphi: X \rightarrow Y$ be a homomorphism of $B C K$-algebras, then $\varphi^{-1}(\nu) \in F I I T(X)$.

Proof. Let $x \in X$. Then

$$
\varphi^{-1}(\nu)(0)=\nu(\varphi(0)) \geq \nu(\varphi(x))=\varphi^{-1}(\nu)(x)
$$

As

$$
\begin{gathered}
\varphi^{-1}(\nu)(x)=\nu(\varphi(x)) \geq T\left(\nu\left(\varphi(x) *\left(\varphi\left(x_{1}\right) * \varphi(x)\right), \nu\left(\varphi\left(x_{2}\right)\right)\right)\right. \\
=T\left(\nu\left(\varphi\left(x *\left(x_{1} * x\right)\right)\right), \nu\left(\varphi\left(x_{2}\right)\right)\right)=T\left(\varphi^{-1}(\nu)\left(x *\left(x_{1} * x\right)\right), \varphi^{-1}(\nu)\left(x_{2}\right)\right)
\end{gathered}
$$

so

$$
\varphi^{-1}(\nu)(x) \geq T\left(\varphi^{-1}(\nu)\left(x *\left(x_{1} * x\right)\right), \varphi^{-1}(\nu)\left(x_{2}\right)\right)
$$

Therefore $\varphi^{-1}(\nu) \in \operatorname{FIIT}(X)$.
Proposition 4.15. If $\mu \in \operatorname{FPIIT}(X)$ and $\varphi: X \rightarrow Y$ is a homomorphism of $B C K$-algebras, then $\varphi(\mu) \in \operatorname{FPIIT}(Y)$.

Proof. Let $x \in X$ and $y \in Y$ with $\varphi(x)=y$. Now

$$
\varphi(\mu)(0)=\sup \{\mu(0) \mid 0 \in X, \varphi(0)=0\} \geq \sup \{\mu(x) \mid x \in X, \varphi(x)=y\}=\varphi(\mu)(y)
$$

thus

$$
\varphi(\mu)(0) \geq \varphi(\mu)(y)
$$

Also let $x_{1}, x_{2}, x_{3} \in X$ such that $\varphi\left(x_{1}\right)=y_{1}, \varphi\left(x_{2}\right)=y_{2}, \varphi\left(x_{3}\right)=y_{3}$. Then

$$
\begin{gathered}
\varphi(\mu)\left(y_{1} * y_{3}\right)=\sup \left\{\mu\left(x_{1} * x_{3}\right) \mid x_{1}, x_{3} \in X, \varphi\left(x_{1}\right)=y_{1}, \varphi\left(x_{3}\right)=y_{3}\right\} \\
\geq \sup \left\{T\left(\mu\left(\left(x_{1} * x_{2}\right) * x_{3}\right), \mu\left(x_{2} * x_{3}\right)\right) \mid x_{1}, x_{2}, x_{3} \in X, \varphi\left(x_{1}\right)=y_{1}, \varphi\left(x_{2}\right)=y_{2}, \varphi\left(x_{3}\right)=y_{3}\right\} \\
=T\left(\sup \left\{\mu\left(\left(x_{1} * x_{2}\right) * x_{3}\right)\right) \mid x_{1}, x_{2}, x_{3} \in X, \varphi\left(x_{1}\right)=y_{1}, \varphi\left(x_{2}\right)=y_{2}, \varphi\left(x_{3}\right)=y_{3}\right\} \\
\left., \sup \left\{\mu\left(x_{2} * x_{3}\right) \mid x_{2}, x_{3} \in X, \varphi\left(x_{2}\right)=y_{2}, \varphi\left(x_{3}\right)=y_{3}\right\}\right) \\
=T\left(\sup \left\{\mu\left(\left(x_{1} * x_{2}\right) * x_{3}\right)\right) \mid x_{1}, x_{2}, x_{3} \in X, \varphi\left(\left(x_{1} * x_{2}\right) * x_{3}\right)=\left(y_{1} * y_{2}\right) * y_{3}\right\} \\
, \sup \left\{\mu\left(x_{2} * x_{3}\right) \mid x_{2}, x_{3} \in X, \varphi\left(x_{2} * x_{3}\right)=y_{2} * y_{3}\right\} \\
=T\left(\varphi(\mu)\left(\left(y_{1} * y_{2}\right) * y_{3}\right), \varphi\left(\mu_{A}\right)\left(y_{2} * y_{3}\right)\right)
\end{gathered}
$$

therefore

$$
\varphi(\mu)\left(y_{1} * y_{3}\right) \geq T\left(\varphi(\mu)\left(\left(y_{1} * y_{2}\right) * y_{3}\right), \varphi(\mu)\left(y_{2} * y_{3}\right)\right)
$$

Therefore $\varphi(\mu) \in \operatorname{FPIIT}(Y)$.
Proposition 4.16. If $\nu \in \operatorname{FPIIT}(Y)$ and $\varphi: X \rightarrow Y$ be a homomorphism of $B C K$-algebras, then $\varphi^{-1}(\nu) \in \operatorname{FPIIT}(X)$.

Proof. Let $x \in X$. Then

$$
\varphi^{-1}(\nu)(0)=\nu(\varphi(0)) \geq \nu(\varphi(x))=\varphi^{-1}(\nu)(x)
$$

Let $x_{1}, x_{2}, x_{3} \in X$. As

$$
\begin{gathered}
\varphi^{-1}(\nu)\left(x_{1} * x_{3}\right)=\nu\left(\varphi\left(x_{1} * x_{3}\right)\right)=\nu\left(\varphi\left(x_{1}\right) * \varphi\left(x_{3}\right)\right) \\
\geq T\left(\nu\left(\left(\varphi\left(x_{1}\right) * \varphi\left(x_{2}\right)\right) * \varphi\left(x_{3}\right)\right), \nu\left(\varphi\left(x_{2}\right) * \varphi\left(x_{3}\right)\right)\right) \\
=T\left(\nu\left(\varphi\left(x_{1} * x_{2}\right) * x_{3}\right), \nu\left(\varphi\left(x_{2} * x_{3}\right)\right)\right)=T\left(\varphi^{-1}(\nu)\left(\left(x_{1} * x_{2}\right) * x_{3}\right), \varphi^{-1}(\nu)\left(x_{2} * x_{3}\right)\right)
\end{gathered}
$$

so

$$
\varphi^{-1}(\nu)\left(x_{1} * x_{3}\right) \geq T\left(\varphi^{-1}(\nu)\left(\left(x_{1} * x_{2}\right) * x_{3}\right), \varphi^{-1}(\nu)\left(x_{2} * x_{3}\right)\right) .
$$

Therefore $\varphi^{-1}(\nu) \in \operatorname{FPIIT}(X)$.

Acknowledgment

We would like to thank the referees for carefully reading the manuscript and making several helpful comments to increase the quality of the paper.

References

[1] M. T. Abu Osman, On some products of fuzzy subgroups, Fuzzy Sets Syst., 24(1987), 79-86.
[2] M. Alcheikh and A. Sabouh, A Study of Fuzzy Ideals in BCK Algebra, J. Math. Res., 11(5)(2019), 11-15.
[3] J. J. Buckley and E. Eslami, An introduction to fuzzy logic and fuzzy sets, Springer-Verlag Berlin Heidelberg GmbH, 2002.
[4] Y. Imai and K. Iseki, On axioms of proportional calculi xiv proc, Japan Acad., 42(1966), 19-22.
[5] K. Iseki and S. Tanaka, An Introduction to the Theory of BCK-algebras, Math. Japon, 23(1987), 1-26.
[6] Y. B. Jun, A note on fuzzy ideals in BCK-algebras, Math. Japon, 42(2)(1995), 233-235.
[7] Y. B. Jun, Fuzzy Commutative Ideals of BCK-algebras, Fuzzy Set Syst., 64(1994), 401-405.
[8] Y. B. Jun, Finite valued fuzzy ideals in BCK-algebras, J. Fuzzy Math., 5(1)(1997), 111-114.
[9] Y. B. Jun, Characterizations of Noetherian BCK-algebras via fuzzy ideals, Fuzzy Sets Syst., 108(2)(1997), 231-234.
[10] Y. B. Jun, S. M. Hong, J. Meng and X. L. Xin, Characterizations of fuzzy positive implicative ideals in BCK-algebras, Math. Japon, 40(3)(1994), 503-507.
[11] Y. B. Jun, S. M. Hong, S. J. Kim, and S. Z. Song, Fuzzy ideals and fuzzy subalgebras of BCK-algebras, J. Fuzzy Math., 7(2)(1999), 411-418.
[12] Y. B. Jun and E. H. Roh, Fuzzy commutative ideals of BCK-algebras, Fuzzy Sets Syst., 64(3)(1994), 401-405.
[13] Y. B. Jun, E. H. Roh and S. M. Mostafa, On fuzzy implicative ideals of BCK Algebra, Soochow J. Math., 25(1)(1999), 57-70.
[14] D. S. Malik and J. N. Mordeson, Fuzzy commutative algebra, World Science publishing Co. Pte. Ltd., 1995.
[15] J. Meng, On Ideals in BCK-algebras, Math. Japon, 40(1)(1994), 143-154.
[16] J. Meng, Y. B. Jun and H. S. Kim, Fuzzy implicative ideals of BCK-algebras, Fuzzy Sets Syst., 89(2)(1997), 243-248.
[17] R. Rasuli, Fuzzy Ideals of Subtraction Semigroups with Respect to At-norm and At-conorm, J Fuzzy Math Los Angeles, 24(4)(2016), 881-892.
[18] R. Rasuli, Fuzzy modules over a t-norm, Int. J. Open Prob. Compt. Math., 9(3)(2016), 12-18.
[19] R. Rasuli, Fuzzy Subrings over a t-norm, J. Fuzzy Math. Los Angeles, 24(4)(2016), 9951000.
[20] R. Rasuli, Norms over intuitionistic fuzzy subrings and ideals of a ring, Notes on Intuitionistic Fuzzy Sets, 22(5)(2016), 72-83.
[21] R. Rasuli, Norms over fuzzy Lie algebra, J. New Theory, 15(2017), 32-38.
[22] R. Rasuli, Fuzzy subgroups on direct product of groups over a t-norm, J. Fuzzy Set Valued Anal., 3(2017), 96-101.
[23] R. Rasuli, Characterizations of intuitionistic fuzzy subsemirings of semirings and their homomorphisms by norms, J. New Theory, 18(2017), 39-52.
[24] R. Rasuli, Intuitionistic fuzzy subrings and ideals of a ring under norms, LAP LAMBERT Academic publishing, 2017.
[25] R. Rasuli, Characterization of Q-Fuzzy subrings (Anti Q-Fuzzy Subrings) with respect to a T-norm (T-Conorms), J. Inf. Optim. Sci., 39(4)(2018), 827-837.
[26] R. Rasuli, T-fuzzy submodules of $R \times M$, J. New Theory, 22(2018), 92-102.
[27] R. Rasuli, Fuzzy subgroups over a T-norm, J. Inf. Optim. Sci., 39(8)(2018), 1757-1765.
[28] R. Rasuli, Fuzzy Sub-vector Spaces and Sub-bivector Spaces under t-Norms, Gen. Lett. Math., 5(2018), 47-57.
[29] R. Rasuli, Anti Fuzzy Submodules over A t-conorm and Some of Their Properties, J. Fuzzy Math. Los Angles, 27(2019), 229-236.
[30] R. Rasuli, Artinian and Noetherian Fuzzy Rings, Int. J. Open Prob. Compt. Math., 12(2019), 1-7.
[31] R. Rasuli and H. Narghi, T-Norms Over Q-Fuzzy Subgroups of Group, Jordan J. Math. Statist., 12(2019), 1-13.
[32] R. Rasuli, Fuzzy equivalence relation, fuzzy congrunce relation and fuzzy normal subgroups on group G over t-norms, Asian J. Fuzzy Appl. Math., 7(2019), 14-28.
[33] R. Rasuli, Norms over anti fuzzy G-submodules, MathLAB J., 2(2019), 56-64.
[34] R. Rasuli, Norms over bifuzzy bi-ideals with operators in semigroups, Notes Intuit. Fuzzy Sets, 25(2019), 1-11.
[35] R. Rasuli, Norms Over Basic Operations on Intuitionistic Fuzzy Sets, J. Fuzzy Math. Los Angles, 27(3)(2019), 561-582.
[36] R. Rasuli, T-fuzzy Bi-ideals in Semirings, Earthline J. Math. Sci., 27(1)(2019), 241-263.
[37] R. Rasuli, Norms Over Intuitionistic Fuzzy Vector Spaces, Algebra Lett., 1(1)(2019), 1-19.
[38] R. Rasuli, Some Results of Anti Fuzzy Subrings Over tConorms, MathLAB J., 1(4)(2019), 25-32.
[39] R. Rasuli, Anti Fuzzy Equivalence Relation on Rings with respect to t-conorm C, Earthline J. Math. Sci., 3(1)(2020), 1-19.
[40] R. Rasuli, Anti Fuzzy Subbigroups of Bigroups under t-conorms, J. Fuzzy Math. Los Angles, 28(1)(2020), 181-200.
[41] R. Rasuli, t-norms over Fuzzy Multigroups, Earthline J. Math. Sci., 3(2)(2020), 207-228.
[42] R. Rasuli, Anti Q-fuzzy subgroups under t-conorms, Earthline J. Math. Sci., 4(1)(2020), 13-28.
[43] R. Rasuli, Anti fuzzy congruence on product lattices with respect to S-norms, The Second National Congress on Mathematics and Statistics Conbad Kavous University, Conbad Kavous, Iran, 2020.
[44] R. Rasuli, Direct product of fuzzy multigroups under t-norms, Open J. Discrete Appl. Math., 3(1)(2020), 75-85.
[45] R. Rasuli, Level subsets and translations of $Q F S T(G)$, MathLAB J., 5(1)(2020), 1-11.
[46] R. Rasuli, Conorms over anti fuzzy vector spaces,Open J. Math. Sci., 4(2020), 158-167.
[47] R. Rasuli, Intuitionistic fuzzy subgroups with respect to norms (T, S), Eng. Appl. Sci. Lett., 3(2)(2020), 40-53.
[48] R. Rasuli, M. Moatamedi nezhad and H. Naraghi, Characterization of $T F(G)$ and direct product of it, $1^{S T}$ National Conference on Soft Computing and Cognitive Science, 9-10 July 2020 (SCCS2020), Fucalty of Technology and Engineering Minudasht, Iran.
[49] R. Rasuli, Anti complex fuzzy subgroups under s-norms, Eng. Appl. Sci. Lett., 3(4)(2020), 1-10.
[50] R. Rasuli and M. M. Moatamedi nezhad, Characterization of fuzzy modules and anti fuzzy modules under norms, The First International Conference on Basic Sciences, Tehran, Iran, October 21, 2020.
[51] R. Rasuli and M. M. Moatamedi nezhad, Fuzzy subrings and anti fuzzy subrings under norms, The First International Conference on Basic Sciences, Tehran, Iran, October 21, 2020.
[52] R. Rasuli, Anti Q-fuzzy translations of anti Q-soft subgroups, $3^{\text {rd }}$ national Conference on Management and Fuzzy Systems, University of Eyvanekey, Eyvanekey, Iran, March 2021.
[53] R. Rasuli, Conorms over conjugates and generalized characterestics of anti Q-fuzzy subgroups, $3^{\text {rd }}$ national Conference on Management and Fuzzy Systems, University of Eyvanekey, Eyvanekey, Iran, March 2021.
[54] R. Rasuli, Fuzzy congruence on product lattices under T-norms, J. Inf. Optim. Sci., 42(2)(2021), 333-343.
[55] R. Rasuli, Intuitionistic fuzzy congruences on product lattices under norms, J. Interdiscip. Math., 24(2)(2021), 1281-1304.
[56] R. Rasuli, Conorms over level subsets and translations of anti Q-fuzzy Subgroups, Int. J. Math. Comput., 32(2)(2021), 55-67.
[57] O. G. Xi, Fuzzy BCK-algebras, Math. Japon, 36(1991), 935-942.
[58] L. A. Zadeh, Fuzzy sets, Inf. Control., 8(1965), 338-353.
[59] M. Zulfiqar, Some properties of (α, β)-fuzzy positive implicative ideals in BCK-algebras, Acta Scientiarum Technol., 35(2)(2013), 371-377.

Department of Mathematics, Payame Noor University (PNU), P. O. Box 193953697, Tehran, Iran

Email address: rasulirasul@yahoo.com

[^0]: 2020 Mathematics Subject Classification. 11S45, 03E72, 15A60, 55N45, 51A10.
 Key words and phrases. Algebra and orders, theory of fuzzy sets, norms, products and intersections, homomorphisms.
 *Corresponding author

 This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

