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A new notion of affine sets

Paulraj Gnanachandra1 and Mohan Arunkumar2

Abstract. In this paper, we investigate the behaviour of e-convex sets and e-

affine sets. Moreover, some notions like S(e, a, ρ, α) and e-affine cones are intro-

duced and discussed. We complete with a role of above sets in linear idempotent

maps.

1. Introduction

Geometrically, surfaces and curves generally reviewed to be set of points with

outstanding features. Affine and convex spaces give an important framework for

doing geometry. Any line is affine but a line segment is convex, but not affine

(unless singleton). Hyperplanes are affine and convex but halfspaces are convex

only. These inducements to concentrates on e-affine spaces. Youness [3] initiate e-

convex sets and study optimality for some non-linear programming problems. Some

notable result related to this notion are given in [1, 4, 5, 7, 8]. As a generalization

of e-convex spaces, we introduce e-affine spaces with more counter examples. The

framework of this paper as: for the first section, we list out the needed definitions

and preliminary results. In section 2, we give out properties which related to e-

convex sets. Section three is devoted to study the role of e-affine sets in idempotent

injective maps. We have also given the idea of e-affine cone in section 4.

2. Notations and Preliminaries

Throughout this paper and for simplicity in appearance, e is a map from Rn to

Rn. We now recall some preliminaries from [2, 6].

Definition 2.1. Any point s is of the form s = θs1 + (1 − θ)s2, where θ ∈ R
(0 ≤ θ ≤ 1) is the affine combination (convex combination) of s1 and s2. A line

(line segment) through s1 and s2 is described as all affine combinations (convex

combinations) of s1 and s2.
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Definition 2.2. Affine set (convex set) is a set that is closed under affine com-

binations (convex combinations), i.e., contains the line (line segment) through any

two distinct points in the set.

Example 2.3. Solution set of linear equations {s : As = b} is an example of a

affine set.

Lemma 2.4. If a set S ⊆ Rn is e-convex, then e(S) ⊆ S, where e : Rn 7→ Rn.

Definition 2.5. Let α ∈ R, a ∈ Rn and e : Rn 7→ Rn be any map. S(e, a, ρ, α) =

{s ∈ Rn :< e(s), a > ρα} where ρ ∈ {<,=, >,≤,≥} and < ., . > represents the inner

product on Rn. Then we have the following special case for S:

i. S(e, a,≥, α) = {s ∈ Rn :< e(s), a >≥ α} is defined as the e-hyperplane,

ii. S(e, a,≤, α) = {s ∈ Rn :< e(s), a >≤ α} is defined as the closed e-half

space, and

iii. S(e, a,<, α) = {s ∈ Rn :< e(s), a >< α} is defined as the open e-half space.

Definition 2.6. A function e : Rn 7→ Rn is said to be invariant at a ∈ Rn if

e(x+a)=e(x)+a where x ∈ Rn.

3. e-Affine Sets

In this section, we introduce e-affine sets and brood over some of their properties

and investigate their relationship with convex sets.

Definition 3.1. An e-affine set is a set S ⊆ Rn such that θe(s1)+(1−θ)e(s2) ∈ S
for s1, s2 ∈ S, θ ∈ R and e is a mapping from Rn to Rn.

Proposition 3.2. Every e-affine set is e-convex.

Proof. Let S ⊆ Rn be e-affine. For every s1, s2 ∈ S and θ ∈ R we have

θe(s1) + (1− θ)e(s2) ∈ S. Also this is holds for a particular θ such that 0 ≤ θ ≤ 1.

Therefore S is e-convex. �

But an e-convex set need not be e-affine, the following example illustrates that.

Example 3.3. Define e : R2 −→ R2 by e(s1, s2) = (0, s2). Let

S1 = {(s1, s2) :∈ R2 : (s1, s2) = θ1(0, 0) + θ1(2, 1) + θ3(0, 3)}

and

S2 = {(s1, s2) :∈ R2 : (s1, s2) = θ1(0, 0) + θ2(0,−3) + θ3(−2,−1)}

where θ1, θ2, θ3 ≥ 0, S = S1 ∪ S2 and θ1 + θ2 + θ3 = 1.
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For (2, 1), (0, 3) ∈ S1. Take θ = −1. Then

θ e(s1) + (1− θ) e(s2) = −1 e(2, 1) + 2 e(0, 3)

= (−1) (0, 1) + 2 (0, 3)

= (0,−1) + (0, 6)

= (0, 5) /∈ S1.

Therefore S is not e-affine.

Proposition 3.4. If a set S ⊆ Rn is e-affine, then e(S) ⊆ S.

Proof. Proof follows from Proposition 3.2 and Lemma 2.4. �

The below example explains that there is an affine set but not e-affine for a

particular operator e.

Example 3.5. The set S = {(s, s + 1) : s ∈ R} is affine. Let e : R2 −→ R2

defined by e(s1, s2) = (−s1,−s2). Take (−1, 0), (0, 1) ∈ S and θ = 2. Then

θ e(−1, 0) + (1− θ) e(0, 1) = 2 (1, 0) + (−1) (0,−1)

= (2, 0) + (0, 1) = (2, 1) /∈ S.

Therefore S is not e-affine.

Proposition 3.6. Let e : Rn −→ Rn be a linear map such that e(S) ⊆ S, where

S is a subspace of Rn. Then S is e-affine.

Proof. Subspace that S of Rn implies θ1 s1 +θ2 s2 ∈ S, for every s1, s2 ∈ S and

θ1, θ2 ∈ R. By putting θ2 = 1−θ1, we get that θ1 s1+(1−θ1)s2 ∈ S, for every θ1 ∈ R;

e(θ1 s1 + (1− θ1) s2) ∈ e(S) ⊆ S. Linearity of e implies, θ1 e(s1) + (1− θ1)e(s2) ∈ S
and we get that S is e-affine. �

An e-affine set need not be a subspace of Rn, we prove this by the following

example.

Example 3.7. Let S = {(s, s + 1) : s ∈ R} and e : R2 −→ R2 be defined by

e(s1, s2) = (−s2,−s1). It can be verified that e is linear. Let (s1, s1+1), (s2, s2+1) ∈
S and θ ∈ R.

θe(s1, s1 + 1) + (1− θ)e(s2, s2 + 1) = θ(−s1 − 1,−s1) + (1− θ)(−s2 − 1,−s2)
= (−θs1 − θ − s2 − 1 + θs2 + θ,−θs1 − s2 + θs2).

Hence S is e-affine and so e(S) ⊆ S. Since (0, 0) /∈ S, S is not a subspace of

Rn.

For a linear, injective and idempotent map the converse of Proposition 3.6 holds.

Proposition 3.8. Let S be an e-affine set containing the origin defined on a

linear, injective and idempotent map e : Rn −→ Rn. Then S is a subspace of Rn.
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Proof. Since S is e-affine, θe(s1) + (1 − θ)e(s2) ∈ S, θ ∈ R and s1, s2 ∈ S.

Let s2 = 0, this implies that e(s2) = 0. Hence, θe(s1) ∈ S and e(θs1) ∈ S. Since

e is idempotent, e(θs1) = e(e(θs1)) ∈ e(S) so that e(θs1) = e(s), for some s ∈ S.

Injectivity of e implies that θs1 = s ∈ S. Now, we have

e

(
s1 + s2

2

)
=

1

2
e(s1 + s2) =

1

2
e(s1) +

(
1− 1

2
e(s2)

)
∈ S

e

(
s1 + s2

2

)
= e

(
e

(
s1 + s2

2

))
∈ e(S)

Since e is injective, s1+s2
2
∈ S. This implies that s1 + s2 ∈ S. Hence S is a

subspace of Rn. �

Definition 3.9. Two e-affine sets S and T are parallel if S = T + r, for some

r ∈ Rn.

Theorem 3.10. Let e : Rn −→ Rn is invariant at r ∈ Rn and S be e-affine.

Then S + r is e-affine.

Proof. Let s1 +r, s2 +r ∈ S+r, where s1, s2 ∈ S and θ ∈ R. Since S is e-affine

and invariant at r,

θ e(s1 + r) + (1− θ) e(s2 + r) = θ (e(s1) + r) + (1− θ) (e(s2) + r)

= θ.e(s1) + (1− θ).e(s2) + θr + (1− θ)r
= (θ e(s1) + (1− θ) e(s2)) + r ∈ S + r.

Hence S + r is e-affine. �

The above result establishes that translation of an e-affine is e-affine under cer-

tain constrain e.

Theorem 3.11. In a linear map, the sum of two e-affine sets is e-affine.

Proof. Let s1 + s2, s3 + s4 ∈ S1 + S2 where S1, S2 ⊆ Rn be e-affine sets and

θ ∈ R. Therefore θ e(s1) + (1− θ) e(s3) ∈ S1 and θ e(s2) + (1− θ) e(s4) ∈ S2. Since

e is linear, we have θ e(s1 + s2) + (1 − θ) e(s3 + s4) ∈ S1 + S2. Hence S1 + S2 is

e-affine. �

Remark 3.12. (i) It can be easily verify that the linear combination of

e-affine sets is e-affine whenever e is linear.

(ii) Also, for all α ∈ R, αS is e-affine whenever S is e-affine and e is linear.

In (ii) the linearity of e cannot be lose one’s grip on.

Example 3.13. Consider S = {(s, s+1) : s ∈ R} and e : R2 7→ R2 by e(s1, s2) =

(s1, s2 − 1) where s1, s2 ∈ R. Choose α, β ∈ R such that α + β 6= 1. Then

e(α(s1, s2) + β(s3, s4)) = e(αs1 + βs3, αs2 + βs4)

= (αs1 + βs3, αs2 + βs4 − 1)
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and

αe((s1, s2)) + βe((s3, s4)) = α(s1, s2 − 1) + β(s3, s4 − 1)

= (αs1 + βs3, αs2 + βs4 − α− β)

and hence e is not linear. Fix α = −2 and (2, 3), (−1, 0) ∈ S which implies

(−4,−6), (2, 0) ∈ αS. Then

s = θe((−4,−6)) + (1− θ)e((2, 0))

= θ(−4,−7) + (1− θ)(2,−1)

= (−4θ,−7θ) + (2− 2θ,−1 + θ)

= (−6θ + 2,−6θ − 1)

and put θ = −1, s = (8, 5) = −2
(
−4, −5

2

)
/∈ αS. Since

(
−4, −5

2

)
/∈ S, which implies

that αS is not e-affine.

Theorem 3.14. For a linear map e, intersection of two e-affine sets is e-affine.

Proof. The result follows from the definition. �

The above theorem holds for arbitrary intersection also. The upcoming example

instantiate that union of two e-affine sets need not be e-affine.

Example 3.15. Let S1 = {(s, s + 1) : s ∈ R}, S2 = {(−s, s − 1) : s ∈ R} and

e : R2 −→ R2 be as e(s1, s2) = (−s2,−s1). By Example 3.13, S1 is e-affine. Let

(−s1, s1 − 1), (−s2, s2 − 1) ∈ S2 and θ ∈ R. Then

θe((−s1, s1 − 1)) + (1− θ)e((−s2, s2 − 1)) = θ(−s1 + 1, s1) + (1− θ)(−s2 + 1, s2)

= (−θs1 + θ − s2 + 1 + θs2 − θ, θs1 + s2 − θs2)
= (−θs1 − s2 + θs2 + 1, θs1 + s2 − θs2)
= (−(θs1 + s2 − θs2 − 1), θs1 + s2 − θs2) ∈ S2.

This proves that S2 is e-affine. Also (0,1), (0,-1) ∈ S1 ∪ S2, we have

θe(0, 1) + (1− θ)e(0,−1) = θ(−1, 0) + (1− θ)(1, 0)

= (−θ + 1− θ, 0)

= (1− 2θ, 0) = (0, 0) if θ =
1

2
/∈ S1 ∪ S2.

This shows that S1 ∪ S2 is not e-affine.

Definition 3.16. For an idempotent affine map e : Rn −→ Rn, we define the

following set

S(e, a, ρ, α) = {s ∈ Rn :< e(s), a > ρα},
where α ∈ R, a ∈ Rn and ρ ∈ {< ·, · >,=,≤, and ≥}.

Theorem 3.17. S(e, a, ρ, α) is e-affine.
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Proof. Let s1, s2 ∈ S(e, a, ρ, α) and θ ∈ R. Then

< e(θe(s1) + (1− θ)e(s2)), a > =< θe2(s1) + (1− θ)e2(s2), a >
=< θe(s1) + (1− θ)e(s2), a >
=< θe(s1), a > + < (1− θ)e(s2), a >
= θ < e(s1), a > +(1− θ) < e(s2), a > .

This implies that e(s1) + (1 − θ) e(s2) ∈ S(e, a, ρ, α). Thus S(e, a, ρ, α) is e-

affine. �

Corollary 3.18. (i) Any e-hyperplane is e-affine.

(ii) Any closed e-half-space is e-affine.

(iii) Any open e-half-space is e-affine.

Corollary 3.19. For a linear idempotent affine map e, the set {s ∈ Rn :<

e(s), ai > ραi for i ∈ I} is e-affine where ρ{< ·, · >,=,≤,≥}.

Theorem 3.20. Let S ⊆ Rn be a non-empty e-affine set defined on a linear

injective idempotent map e. Then S is parallel to a unique subspace of T .

Proof. Since S 6= ∅ and e-affine, there is an element e(s) ∈ S. Now S − e(s) =

S + r is a translation of S where r = −e(s). Also, e(s) ∈ S, e(s) − e(s) = 0 ∈
S − e(s) = S + r. Hence S + r is a translation of S and 0 ∈ S + r. Since e is linear

and idempotent, e(−e(s)) = e(y), so e(r) = r. Also, e is linear and has a fixed point

at r, S+r is e-affine, i.e., S+r is e-affine containing the origin. Also, by Proposition

3.8, S+r is a subspace of Rn. Clearly S is parallel to a subspace T where T = S+r.

For the uniqueness, T1 and T2 are subspaces parallel to S. Then T1 and T2 are

parallel to each other, i.e., T2 = T1 + r1, for some r1 ∈ Rn. Again, T2 is a subspace,

0 ∈ T2. Therefore −r1 ∈ T1 (i.e) r1 ∈ T1. Hence T2 = T1 + r1 ⊆ T1. By a similar

argument we have T1 ⊆ T2. Thus T1 = T2. �

Theorem 3.21. Let e : Rn −→ Rn be an idempotent affine map. Let S be an

e-affine set in Rn. Then (θ1 + θ2)e(S) = θ1e(S) + θ2e(S), where θ1, θ2 ∈ R and

θ1 + θ2 6= 0.

Proof. Let s ∈ (θ1 + θ2)e(S). Obviously, s ∈ θ1e(S) + θ2e(S). On the other

hand, S is e-affine. This implies that θ1
θ1+θ2

e(S) + θ2
θ1+θ2

e(S) ⊆ e(S), i.e., θ1e(S) +

θ2e(S) ⊆ (θ1 + θ2)e(S). �

4. e-affine cone

Definition 4.1. A cone is a set S such that for any s ∈ S and θ ≥ 0, θs ∈
S. Analogously we defined e-cone in Rn. Any point s is of the form s = θ1s1 +

θ2s2, θ1, θ2 ≥ 0 is a conic combination of s1 and s2. A convex cone is a cone that

is convex. That is a convex cone is a set contains all conic combinations {θ1s1 +
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θ2s2 + ...+ θnsn|θi ≥ 0, i = 1, 2, ...n} of points in the set. In other words, it is closed

under convex combinations.

(i) Any line is affine. Also when it passes through the origin, it is a convex

cone.

(ii) Consider a ray S = {s+ θs|θ ≥ 0}. If s = 0, then it is a convex cone.

In this section, we initiate the notions of affine cone and e-affine cone.

Definition 4.2. An affine (e-affine) cone is a cone (e-cone) that is affine (e-

affine).

Proposition 4.3. Let e be a map such that e(S) ⊆ S, is closed under positive

scalar multiplication and addition. Then S is an e-affine cone.

Proof. Let s1, s2 ∈ S and θ ∈ R. By hypothesis, θe(s1) + (1− θ)e(s2) ∈ e(S) ⊆
S. That is S is e-affine. Also θ ∈ R, θ.e(s) ∈ e(S) ⊆ S. This shows that S is e-cone

and then S is an e-affine cone. �

Proposition 4.4. For a linear idempotent map e, e(S) is closed under positive

scalar multiplication and addition where S is an e-affine cone.

Proof. Let s1, s2 ∈ S and θ ∈ R. Since S is e-affine, θe(s1) + (1− θ)e(s2) ∈ S.

Set θ = 1
2
, e(s1)+e(s2)

2
∈ S. Since S is an e-cone, 2e

(
e(s1)+e(s2)

2

)
∈ S. This implies

e(s1) + e(s2) ∈ S, because e is linear and idempotent. Consider e(s1) + e(s2) =

e2(s1) + e2(s2) = e(e(s1) + e(s2)) ∈ e(S), i.e., e(S) is closed under addition. Then

let s ∈ S and θ ∈ R. As S is e-cone, so, θe(s) ∈ S and linearity of e implies that

e(θs) ∈ S. Then e(θs) = e2(θs) = e(e(θs)) ∈ e(S). �

Proposition 4.5. If {Si} is an e-affine cone, then ∩i∈ISi is also an e-affine

cone.

Proof. Let S = ∩i∈ISi and s ∈ S, θ > 0. Then s ∈ Si, for all i. Each Si
is an e-affine cone, so, Si is an e-cone. Then θe(s) ∈ Si for all i. This implies

that θe(s) ∈ ∩Si = S. Hence, S is an e-cone. Since each Si is e-affine, S is also

e-affine. �

5. Conclusion

An milestone of generalized e-convex sets that is e-affine has been introduced

and explore some of its rudimentary properties. Also e-affine sets are characterized

by linear and idempotent operators.
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