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Jafari variational iteration method for solving

one-dimensional fractional diffusion equations

Abubker Ahmed

Abstract. H. Jafari proposed a new integral transform recently, namely, the

Jafari transform, which covered all classes of integral transforms in the class of

Laplace transform, such as Laplace, Sumudu, Elzaki, Aboodh, natural, and Shehu

transformation, etc. In this paper, we utilize a semi-analytical technique, namely

the Jafari variational iteration method, abbreviated JVIM, and we apply this

technique to resolve one-dimensional diffusion equations with fractional-order type

using the Caputo fractional derivative. The results are compared with homotopy

analysis Shehu transform method (HASTM). Also, the results show the suggested

algorithm is efficient, accurate, and a powerful technique for solving a wide variety

of linear and non-linear problems arising in various scientific areas.

1. Introduction

Mathematical models are created from assumptions inspired by the observation

of some real phenomena in the hope that the model behavior resembles the real

behavior. Therefore, partial differential equations are used in many areas of science

and engineering to better understand them. Unfortunately, an accurate solution

to these problems is very difficult, especially for nonlinear problems. Therefore, in
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the last few decades, researchers have sought to find accurate methods for solving

nonlinear differential equations; see [11, 38, 20, 31, 32, 23, 3].

Historically, the notion of fractional calculus is very old; it was first introduced

by Leibniz and L’Hopital in the year 1695 [37]. Since then, the concept of frac-

tional calculus has been used in many real-life problems since it has properties to

explain and make predictions about natural phenomena more accurately than clas-

sical calculus [6]. Fractional diffusion equations gained considerable popularity in

synchronization, mechanical systems, control, plasma physics, quantum mechanics,

chaos, and a dynamic system. In the literature, there are different methods utilized

for solving the fractional diffusion equations. Such as the homotopy analysis Shehu

transform method (HASTM) [33]. The Homotopy analysis method (HAM) [3, 19].

The Adomian decomposition method (ADM) [17]. The variational iteration method

(VIM) [12, 14, 15, 35] . The homotopy perturbation method (HPM) [13, 18]. The

homotopy analysis Sumudu transform method (HASTM) [29]. The reduce differ-

ential transform method (RDTM) [41] and others. Among these the variational

iteration method (VIM), proposed by J.H. He [12, 14, 15, 35], which was success-

fully applied for solving linear and non-linear problems. On the other hand, during

the last two decades, many researchers have introduced integral transforms in the

class of Laplace transforms, such as Sumudu, Elzaki, Natural, Aboodh, and Shehu

transform, etc., see[25, 40, 42] and [2, 4, 36, 30, 9, 10, 22, 27, 28]. Therefore, H.

Jafari introduced a generalized integral transform that covered all classes of integral

transforms in the class of Laplace transform. This transform was used for solving

ODEs, integral equations, and fractional integral equations [34, 16].

In this work, we study the one-dimensional diffusion equations with fractional-

order type under the Caputo fractional derivative. The proposed technique is a

combination of the Jafari transform and the variational iteration method. The

method is called the Jafari variational iteration method, abbreviated JVIM. Further,

the homotopy analysis Shehu transform method (HASTM) [33] is compared with

the proposed method.

The structure of this paper is organized as follows: In Section (2), we present the

Jafari transform and some definitions of fractional calculus. In Section (3), the JVIM

and relation between other transforms are analyzed. In Section (4), the approximate

solution for the one-dimensional diffusion equations is presented. Finally, in Section

(5), some conclusions are presented.

2. Jafari Transform and Fractional Calculus

Some basic definitions of fractional calculus and the Jafari transform are used

later in this paper.
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Definition 2.1. The Riemann-Liouville fractional integral of order α ≥ 0, of a

function f(t) : (0,+∞) → R, is defined as [26, 24].Iαf(t) =
1

Γ(α)

∫ t

0
(t− τ)α−1f(τ)dτ, α > 0,

Iαf(t) = f(t), α = 0.
(1)

where Γ(.) is the gamma function.

Definition 2.2. The Caputo fractional derivative of order n − 1 < α < n, of

function f(t) : (0,+∞) → R, is defined as [26, 24].

cDαf(t) =


1

Γ(n− α)

∫ t

0
(t− τ)n−α−1f (n)(τ)dτ, α ̸= n ∈ R− N,

dn

dtn
f(t), α = n ∈ N.

(2)

In particular,

cDαtm =
Γ(m+ 1)

Γ(m− α + 1)
tm−α.

Definition 2.3. The generalized Mittag-Leffler function (two parameters) is

defined as: [34, 24]

Eα,β(at) =
∞∑
k=0

(at)k

Γ(ak + β)
, α > 0, α, β ∈ R, t ∈ C. (3)

In particular, if β = 1, we have (one parameter)

Eα(at) =
∞∑
k=0

(at)k

Γ(ak + 1)
. (4)

Definition 2.4. Let f(t) be an integrable function defied for t ≥ 0, p(s) ̸= 0,

and q(s) are positive real functions, we define the Jafari transform of f(t), denoted

by T [f(t)], by the formula [16]

T [f(t)] = p(s)

∫ ∞

0

f(t)e−q(s)tdt =
∼
f(s), (5)

provided the integral exists for some q(s).

Definition 2.5. If n ∈ Z+, where n−1 < α ≤ n and
∼
f(s) be the Jafari transform

of the function f(t), then the Jafari transform of the Caputo fractional derivative

of order α > 0, is[16, 24]

T [cDα(f(t))] = qα(s)
∼
f(s)− p(s)

n−1∑
i=0

qα−1−if (i)(0). (6)
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3. Jafari Variational Iteration Method (JVIM)

In this section, we discuss the JVIM solution to the fractional partial differential

equations. Let us consider the following nonlinear fractional differential equation

cDαν(x, t) + Lν(x, t) + ℵν(x, t) = g(x, t), x > 0. (7)

subject to the initial condition

ν(x, 0) = f(x). (8)

where L is a linear operator, ℵ represents a nonlinear operator, g(x, t) is the source

term, and cDα(.) is the Caputo fractional derivative of order α where 0 < α ≤ 1.

The solution of an algebraic equation f(x) = 0, by using the Lagrange multipliers

is given by

xn+1 = xn + λf(xn). (9)

The optimality condition for the extreme
δxn+1

δxn

Leads to

λ = − 1

f ′(xn)
, (10)

From (9) and (10), we have the approximate solution

xn+1 = xn −
f(xn)

f ′(xn)
, n = 0, 1, 2, · · · (11)

Now, takeing the Jafari transform to (7), we have an algebraic equation as fol-

lows:

qα(s)
∼
ν(x, s)− p(s)qα−1(s)ν(x, 0) + T [Lν(x, t) + ℵν(x, t)− g(x, t)] = 0, (12)

where Tν(x, t) =
∼
ν(x, s), the iteration formula of (12), by using (11), given by

∼
νn+1(x, s) =

∼
νn(x, s) + λ(s)(qα(s)

∼
ν(x, s)− p(s)qα−1(s)ν(x, 0)), (13)

Let us assume that T [Lν(t) + ℵν(t)− g(t)] is a restricted terms. We can derive

a Lagrange multiplier by taking the variation of (13), as:

δ
∼
νn+1(x, s) =δ

∼
νn(x, s) + δλ(s)(qα(s)

∼
ν(x, s))

=δ
∼
νn(x, s) + λ(s)qα(s)(δ

∼
ν(x, s))

=0.

Therefore, the Lagrange multiplier, can be identified as

λ(s) = − 1

qα(s)
. (14)

As a result, we obtain the following iteration formula after takeing the inverse

Jafari transform:

νn+1(x, t) = νn(x, 0)− T−1
[ 1

qα(s)
[T [Lνn(x, t) + ℵνn(x, t)− g(x, t)]]

]
, (15)
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Consequently, an approximate solution may be procured using

ν(x, t) = lim
n→∞

νn(x, t) (16)

Corollary 3.1. In view of (14), we have:

• If p(s) = 1 and q(s) = s, then the Lagrange multiplier, by using the Laplace

transform, is given by λ(s) = − 1

sα
, see [5, 43].

• If p(s) =
1

s
and q(s) =

1

s
, then the Lagrange multiplier, by using the

Sumudu transform, is given by λ(s) = −sα, see [21].

• If p(s) = s and q(s) =
1

s
, then the Lagrange multiplier, by using Elzaki

transform, is given by λ(s) = −sα, see [44].

• If p(s) =
1

s
and q(s) = s, then the Lagrange multiplier, by using the Aboodh

transform, is given by λ(s) = − 1

sα
, see [8].

• If p(s) =
1

ν
and q(s) =

s

ν
, then the Lagrange multiplier, by using the natural

transform, is given by λ(s) = −
(ν
s

)α

, see [1].

• If p(s) = 1 and q(s) =
s

ν
, then the Lagrange multiplier, by using the Shehu

transform, is given by λ(s) = −
(ν
s

)α

, see [39, 7].

4. Applications of the JVIM

In this section, the JVIM is efficiently applied to the fractional diffusion equation

to validate its efficiency and high accuracy.

Example 4.1. Consider the following one-dimensional linear fractional diffusion

equation [33]:

∂αν(x, t)

∂tα
=

∂2ν(x, t)

∂x2
+ ν(x, t), (17)

subject to the initial condition

ν(x, 0) = cos(πx), 0 ≤ x ≤ 1. (18)

In view of (15), the iteration formula of equation (17) is given by

νn+1(x, t) = νn(x, 0)− T−1
[ 1

qα(s)

[
T
[∂ανn(x, t)

∂tα
− ∂2νn(x, t)

∂x2
− νn(x, t)

]]]
, (19)
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Consequently, beginning with ν0(x, 0) = ν(x, 0) = cos(πx), we find the following

approximations

ν1(x, t) =ν0(x, 0)− T−1
[ 1

qα(s)

[
T
[∂αν0(x, t)

∂tα
− ∂2ν0(x, t)

∂x2
− ν0(x, t)

]]]
=cos(πx) + T−1

[ 1

qα(s)

[
T
[
(1− π2) cos(πx)

]]]
=cos(πx) + T−1

[ 1

qα(s)

[
T (1− π2) cos(πx)

p(s)

q(s)

]]
=cos(πx) + (1− π2) cos(πx)

tα

Γ(α + 1)
,

ν2(x, t) =ν1(x, 0)− T−1
[ 1

qα(s)

[
T
[∂αν1(x, t)

∂tα
− ∂2ν1(x, t)

∂x2
− ν1(x, t)

]]]
=cos(πx) + (1− π2) cos(πx)

tα

Γ(α + 1)
+ (1− π2)2 cos(πx)

t2α

Γ(2α + 1)
,

ν3(x, t) =ν2(x, 0)− T−1
[ 1

qα(s)

[
T
[∂αν2(x, t)

∂tα
− ∂2ν2(x, t)

∂x2
− ν2(x, t)

]]]
=cos(πx) + (1− π2) cos(πx)

tα

Γ(α + 1)
+ (1− π2)2 cos(πx)

t2α

Γ(2α + 1)

+ (1− π2)3 cos(πx)
t3α

Γ(3α + 1)
,

and so on. Thus, we have

νn(x, t) =
n∑

m=0

(1− π2)m cos(πx)
tmα

Γ(mα + 1)
,

so that the solution ν(x, t) of the equation (17) is given by

ν(x, t) = lim
n→∞

νn(x, t) = νn(x, t)

=
n∑

m=0

(1− π2)m cos(πx)
tmα

Γ(mα + 1)

= cos(πx)Eα[(1− π2)tα]. (20)

The result is the same as HASTM [33].

Example 4.2. Consider the following nonlinear fractional wave equation [33]:

∂αν(x, t)

∂tα
=

∂2ν(x, t)

∂x2
− 1

2

∂ν2(x, t)

∂x
, 0 < α ≤ 1, (21)

subject to the initial condition

ν(x, 0) = x. (22)
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In view of equation (15), we have

νn+1(x, t) = νn(x, 0)− T−1
[ 1

qα(s)

[
T
[∂ανn(x, t)

∂tα
− ∂2νn(x, t)

∂x2
+

1

2

∂ν2
n(x, t)

∂x

]]]
. (23)

Consequently, beginning with ν0(x, 0) = ν(x, 0) = x, we find the following ap-

proximations

ν1(x, t) =ν0(x, 0)− T−1
[ 1

qα(s)

[
T
[∂αν0(x, t)

∂tα
− ∂2ν0(x, t)

∂x2
+

1

2

∂ν2
0(x, t)

∂x

]]]
=x− T−1

[ 1

qα(s)
[T [x]]

]
= x− T−1

[ p(s)

qα+1(s)
x
]
= x− x

tα

Γ(α + 1)
,

ν2(x, t) =x− x
tα

Γ(α + 1)
+ 2x

t2α

Γ(2α + 1)
,

ν3(x, t) =x− x
tα

Γ(α + 1)
+ 2x

t2α

Γ(2α + 1)
− x

( 1

Γ2(α + 1)
+

4

Γ2(2α + 1)

)Γ(2α + 1)t3α

Γ(3α + 1)
,

and so on. In particular, when α → 1, we obtain an exact solution

ν(x, t) ∼= x(1− t+ t2 − t3) =
x

t+ 1
. (24)

which is the same as given by HASTM [33].

5. Conclusion

In this study, the JVIM has been successfully applied to obtain the solutions

of the one-dimensional fractional diffusion equations. In view of the results, the

relationship between the proposed method and the combination of the variational

iteration method with integral transforms in the class of Laplace transform is proved.

Moreover, we can say that this technique is a powerful mathematical tool for solving

FPDEs. In the future, we will develop the proposed method under other fractional

operators, such as non-local and non-singular fractional derivatives.
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