Mathematical Analysis and its Contemporary Applications Volume 6, Issue 1, 2024, 39-48 doi: 10.30495/maca.2024.2022801.1097 ISSN 2716-9898

Stability of two multi-quadratic mappings by a fixed point method

Maryam Mazdarani

ABSTRACT. In this paper, the Găvruța stability of two multi-quadratic functional equations are established by a known fixed point theorem. As an example, the Hyers-Ulam, Rassias stability and hyperstability of the mentioned mappings are proved in the setting of Banach spaces.

1. Introduction

In 1940, Ulam [22] asked the question concerning the stability of group homomorphisms. The famous Ulam stability problem was partially solved by Hyers [13] for the linear functional equation of Banach spaces. Hyers' theorem was generalized by Aoki [1] for additive mappings and by Th. M. Rassias [18] for linear mappings by considering an unbounded Cauchy difference. A generalization of the Rassias theorem was obtained by Găvruța [12] by replacing the unbounded Cauchy difference by a general control function in the spirit of Rassias approach. Recall that an equation is *stable* in some class of functions if any function from that class, satisfying the equation approximately (in some sense), is near (in some way) to an exact solution of the equation. A lot of information about various functional equations can be found for instance in papers and books [2, 3, 5, 14, 16, 17, 19] and also references therein.

2020 Mathematics Subject Classification. 39B52, 39B72, 39B82.

 $(\mathbf{\hat{n}})$

Key words and phrases. Hyers-Ulam stability; Banach space; multi-quadratic mapping

⁽cc) This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

The stability problem for quadratic functional equation

$$Q(x+y) + Q(x-y) = 2Q(x) + 2Q(y)$$
(1)

has been studied in normed spaces by Skof [20] with a constant bound. Thereafter, Czerwik [10] proved the Hyers-Ulam stability of the quadratic functional equation with a nonconstant bound. Some different versions of quadratic functional equation (1) and its stabilities with applications are available in [4, 11] and other resources.

A general form of (1), say the *generalized quadratic* functional equation is as follows:

$$\mathfrak{Q}(ax+y) + \mathfrak{Q}(ax-y) = 2a^2 \mathfrak{Q}(x) + 2\mathfrak{Q}(y), \qquad (2)$$

where a is a fixed non-zero number in \mathbb{Q} . Moreover, the different form of a quadratic functional equation was presented in [15] as follows:

$$Q(ax+y) + Q(ax-y) = Q(x+y) + Q(x-y) + 2(a^2-1)Q(x),$$
(3)

where, a is a fixed integer with $a \neq 0, \pm 1$.

s

Let V be a commutative group, W be a linear space, and $n \ge 2$ be an integer. For the set X, we denote $\overbrace{X \times X \times \cdots \times X}^{n-\text{times}}$ by X^n . For any $l \in \mathbb{N}_0, n \in \mathbb{N}, t = (t_1 \cdots t_n) \in \{-1, 1\}^n$ and $x = (x_1 \cdots x_n) \in V^n$ we write $lx := (lx_1 \cdots lx_n)$

 $(t_1, \dots, t_n) \in \{-1, 1\}^n$ and $x = (x_1, \dots, x_n) \in V^n$ we write $lx := (lx_1, \dots, lx_n)$ and $tx := (t_1x_1, \dots, t_nx_n)$. Recall that a mapping $f : V^n \longrightarrow W$ is called *multiquadratic* if it is quadratic (satisfying quadratic functional equation (1)) in each component. It is shown in [23] that the system of functional equations defining a multi-quadratic mappings can be unified as a single equation. Indeed, Zhao et al. proved that the mapping $f : V^n \longrightarrow W$ is multi-quadratic if and only if the relation

$$\sum_{\in \{-1,1\}^n} f(x_1 + sx_2) = 2^n \sum_{j_1, j_2, \dots, j_n \in \{1,2\}} f(x_{1j_1}, x_{2j_2}, \dots, x_{nj_n})$$

holds, where $x_j = (x_{1j}, x_{2j}, \ldots, x_{nj}) \in V^n$ with $j \in \{1, 2\}$. Various versions of multi-quadratic mappings were introduced and studied for example in [6], [9] and [21].

In this paper, we establish the Găvruţa stability of multi-quadratic functional equations (taken from (2) and (3) introduced in [6] and [15]) by a known fixed point theorem. As some corollaries, we prove the Hyers-Ulam, Rassias stability and hyperstability of the mentioned mappings in the setting of Banach spaces.

2. Preliminary notations

We commence this section with the following definition which was defined in [6] and [15]. Throughout this section, assume that V and W are vector spaces over \mathbb{Q} (the rationals).

40

Definition 2.1. Let $n \in \mathbb{N}$. Suppose that a mapping $f : V^n \longrightarrow W$ is given. Then

- (i) (see [6].) f is called *n*-quadratic or multi-quadratic (the first kind) if f is quadratic in each variable (see equation (2));
- (ii) (see [15].) f is called *n*-quadratic or multi-quadratic (the second kind) if f is quadratic in each variable (see equation (3)).

Let $n \in \mathbb{N}$ and $x_i^n = (x_{i1}, x_{i2}, \dots, x_{in}) \in V^n$, where $i \in \{1, 2\}$. Let $l_j \in \{1, 2\}$. Put

$$M_i^n = \{ x = (x_{l_11}, x_{l_22}, \dots, x_{l_nn}) \in V^n | \operatorname{Card}\{ l_j : l_j = 1 \} = i \}.$$
(4)

We shall denote x_i^n and M_i^n by x_i and M_i , respectively if there is no risk of ambiguity. Let $x_1, x_2 \in V^n$ and $k \in \mathbb{N}_0$ with $0 \le k \le n$. Put

$$\mathcal{A} = \{\mathfrak{A}_n = (A_1, \dots, A_n) | A_j \in \{x_{1j} \pm x_{2j}, x_{1j}\}\},\$$

where $j \in \{1, ..., n\}$. Consider $\mathcal{A}_k^n := \{\mathfrak{A}_n \in \mathcal{A} | \operatorname{Card} \{A_j : A_j = x_{1j}\} = k\}$. For a multi-quadratic mapping (the second kind) $f : V^n \longrightarrow W$ we use the following notation:

$$f(\mathcal{A}_k^n) := \sum_{\mathfrak{A}_n \in \mathcal{A}_k^n} f(\mathfrak{A}_n), \tag{5}$$

Let a be fixed non-zero number in \mathbb{Q} . Recall that a mapping $f: V^n \longrightarrow W$ satisfies (has) the *quartic condition* in the *j*th variable if

$$f(x_1, \dots, x_{j-1}, ax_j, x_{j+1}, \dots, x_n) = a^2 f(x_1, \dots, x_{j-1}, x_j, x_{j+1}, \dots, x_n)$$

for all $x_1, \ldots, x_n \in V$ and for all $j \in \{1, \ldots, n\}$. The following result was proved in [6, Theorem 2.2].

Theorem 2.1. Consider the mapping $f : V^n \longrightarrow W$. Then, the following assertions are equivalent:

- (i) f is multi-quadratic (the first kind);
- (ii) f satisfies equation

q

$$\sum_{\in \{-1,1\}^n} f(ax_1 + qx_2) = 2^n \sum_{i=0}^n a^{2i} \sum_{x \in M_i} f(x),$$
(6)

with the quadratic condition in all variables, where M_i is defined in (4) and a is a fixed non-zero number in \mathbb{Q} .

The following result was proved in [15, Theorem 3.3].

Proposition 2.2. Consider the mapping $f : V^n \longrightarrow W$. Then, the following assertions are equivalent:

(i) f is multi-quadratic (the second kind);

(ii) f satisfies equation

q

$$\sum_{\substack{\in \{-1,1\}^n}} f(ax_1 + qx_2) = \sum_{k=0}^n \left(2m^2 - 2\right)^k f\left(\mathcal{A}_k^n\right),\tag{7}$$

with the quadratic condition in each variable, where $f(\mathcal{A}_k^n)$ is defined in (5) and a is a fixed integer with $a \neq 0, \pm 1$.

A direct consequence of Theorem 2.1 and Proposition 2.2 is indicated as follows:

Corollary 2.3. Suppose that mapping $f : V^n \longrightarrow W$ is given with the quadratic condition in each variable. Then, f satisfies equation (6) if and only if it fulfills equation (7).

3. Găvruța and Rassias Stability results

In this section, we study the various stabilities of equations (6) and (7). From now on, for two sets X and Y, the set of all mappings from X to Y is denoted by Y^X .Here, we indicate the following theorem which is a fundamental result in fixed point theory [7, Theorem 1]. This result plays a key tool in obtaining our objective in this section.

Theorem 3.1. Given the hypotheses

- (A1) Y is a Banach space, S is a nonempty set, $j \in \mathbb{N}, g_1, ..., g_j : S \longrightarrow S$ and $L_1, ..., L_j : S \longrightarrow \mathbb{R}_+,$ (A2) $\mathcal{T} = \mathcal{V}^S$
- (A2) $\mathcal{T}: Y^{\mathcal{S}} \longrightarrow Y^{\mathcal{S}}$ is an operator satisfying the inequality

$$\|\mathcal{T}\lambda(x) - \mathcal{T}\mu(x)\| \le \sum_{i=1}^{j} L_i(x) \|\lambda(g_i(x)) - \mu(g_i(x))\|, \quad \lambda, \mu \in Y^{\mathcal{S}}, x \in \mathcal{S}, x \in \mathcal{S$$

(A3) $\Lambda : \mathbb{R}^{\mathcal{S}}_{+} \longrightarrow \mathbb{R}^{\mathcal{S}}_{+}$ is an operator defined through

$$\Lambda\delta(x) := \sum_{i=1}^{j} L_i(x)\delta(g_i(x)) \qquad \delta \in \mathbb{R}^{\mathcal{S}}_+, x \in \mathcal{S}.$$

Suppose that a function $\theta : S \longrightarrow \mathbb{R}_+$ and a mapping $\phi : S \longrightarrow Y$ fulfill the next two properties.

$$\|\mathcal{T}\phi(x) - \phi(x)\| \le \theta(x), \quad \theta^*(x) := \sum_{l=0}^{\infty} \Lambda^l \theta(x) < \infty \qquad (x \in \mathcal{S}).$$

Then, there exists a unique fixed point ψ of \mathcal{T} such that

$$\|\phi(x) - \psi(x)\| \le \theta^*(x) \qquad (x \in \mathcal{S}).$$

Moreover, $\psi(x) = \lim_{l \to \infty} \mathcal{T}^l \phi(x)$ for all $x \in \mathcal{S}$.

For a mapping $f : V^n \longrightarrow W$, we define two operators $\mathfrak{D}_1 f$ and $\mathfrak{D}_2 f$ from $V^n \times V^n$ into W via

$$\mathfrak{D}_1 f(x_1, x_2) := \sum_{q \in \{-1, 1\}^n} f(ax_1 + qx_2) - 2^n \sum_{i=0}^n a^{2i} \sum_{x \in M_i} f(x),$$

and

$$\mathfrak{D}_2 f(x_1, x_2) := \sum_{q \in \{-1,1\}^n} f(ax_1 + qx_2) - \sum_{k=0}^n \left(2a^2 - 2\right)^k f(\mathcal{A}_k^n)$$

where M_i and $f(\mathcal{A}_k^n)$ are defined in (4) and (5), respectively in which a is a fixed integer with $a \neq 0, \pm 1$.

We say a mapping $f: V^n \longrightarrow W$ has zero condition or zero functional equation if f(v) = 0 for any $v \in V^n$ with at least one component which is equal to zero. With notations above, we have the following Găvruţa stability for functional equations (6) and (7).

Theorem 3.2. Let $j \in \{-1, 1\}$, V be a linear space and W be a Banach space. Suppose that $\phi: V^n \times V^n \longrightarrow \mathbb{R}_+$ is a mapping satisfying

$$\lim_{l \to \infty} \left(\frac{1}{a^{2nj}}\right)^l \phi(a^{jl}x_1, a^{jl}x_2) = 0, \tag{8}$$

for all $x_1, x_2 \in V^n$ and

$$\Phi(x) = \frac{1}{2^n a^{n(j+1)}} \sum_{l=0}^{\infty} \left(\frac{1}{a^{2nj}}\right)^l \phi\left(a^{jl+\frac{j-1}{2}}x, 0\right) < \infty,$$
(9)

for all $x \in V^n$. If $f : V^n \longrightarrow W$ is a mapping with zero condition fulfilling the inequality

$$\|\mathfrak{D}_1 f(x_1, x_2)\| \le \phi(x_1, x_2),\tag{10}$$

for all $x_1, x_2 \in V^n$, then there exists a solution $\mathcal{Q}: V^n \longrightarrow W$ of (6) such that

$$\|f(x) - \mathcal{Q}(x)\| \le \Phi(x),\tag{11}$$

for all $x \in V^n$. If \mathcal{Q} has the quadratic condition in each of variable, then it is unique multi-quadratic.

PROOF. Putting $x = x_1$ and $x_2 = 0$ in (10), we get

$$\left\|2^{n}f(ax) - 2^{n}a^{2n}f(x)\right\| \le \phi(x,0),$$
(12)

for all $x \in V^n$ (here and the rest of the proof). Inequality (12) can be rewritten as follows:

$$\begin{cases} \left\| \frac{f(ax)}{a^{2n}} - f(x) \right\| \le \frac{1}{2^n a^{2n}} \phi(x, 0), \\ \left\| a^{2n} f(ax) - f(x) \right\| \le \frac{1}{2^n} \phi(x, 0). \end{cases}$$

Set $\xi(x) := \frac{1}{2^n a^{n(j+1)}} \phi\left(a^{\frac{j-1}{2}}x, 0\right)$ and $\mathcal{T}\xi(x) := \frac{1}{a^{2nj}}\xi(a^j x)$, where $\xi \in W^{V^n}$. A modification of (12) shows that $||f(x) - \mathcal{T}f(x)|| \leq \xi(x)$. Define $\Lambda \eta(x) := \frac{1}{a^{2nj}}\eta(a^j x)$ for all $\eta \in \mathbb{R}^{V^n}_+$. Considering $\mathcal{S} = V^n$, $g_1(x) = a^j x$ and $L_1(x) = \frac{1}{a^{2nj}}$ in (A3), we find that Λ has the formation in (A3). On the other hand, we obtain

$$\|\mathcal{T}\lambda(x) - \mathcal{T}\mu(x)\| = \left\|\frac{1}{a^{2nj}} \left[\lambda(a^{j}x) - \mu(a^{j}x)\right]\right\| \le L_{1}(x) \|\lambda(g_{1}(x)) - \mu(g_{1}(x))\|.$$

for all $\lambda, \mu \in W^{V^n}$. The relation above leads us to validity of hypothesis (A2) for \mathcal{T} . It is easily verified that by induction on $l \in \mathbb{N}_0$ that

$$\Lambda^{l}\xi(x) := \left(\frac{1}{2^{n}a^{2nj}}\right)^{l}\xi(a^{jl}x) = \frac{1}{a^{n(j+1)}} \left(\frac{1}{a^{2nj}}\right)^{l}\phi\left(a^{jl+\frac{j-1}{2}}x,0\right).$$
(13)

It now follows that all assumptions of Theorem 3.1 are satisfied by applying (9) and (13) and thus there exists a mapping $\mathcal{Q}: V^n \longrightarrow W$ such that

$$\mathcal{Q}(x) = \lim_{l \to \infty} (\mathcal{T}^l f)(x) = \frac{1}{a^{2nj}} \mathcal{Q}(a^j x)$$

and (11) holds as well. We claim that the following inequality is true for each $x_1, x_2 \in V^n$ and $l \in \mathbb{N}_0$.

$$\|\mathfrak{D}_{1}(\mathcal{T}^{l}f)(x_{1}, x_{2})\| \leq \left(\frac{1}{a^{2nj}}\right)^{l} \phi(a^{jl}x_{1}, a^{jl}x_{2}).$$
(14)

The argument is based on induction. Inequality (10) shows that (14) is true for l = 0. Assume that (14) is valid for an $l \in \mathbb{N}_0$. We have

$$\begin{split} \|\mathfrak{D}_{1}(\mathcal{T}^{l+1}f)(x_{1},x_{2})\| \\ &= \left\| \sum_{q \in \{-1,1\}^{n}} (\mathcal{T}^{l+1}f)(ax_{1}+qx_{2}) - 2^{n} \sum_{i=0}^{n} a^{2i} \sum_{x \in M_{i}} (\mathcal{T}^{l+1}f)(x) \right\| \\ &= \frac{1}{a^{2nj}} \left\| \sum_{q \in \{-1,1\}^{n}} (\mathcal{T}^{l+1}f)(a^{j}(ax_{1}+qx_{2})) - 2^{n} \sum_{i=0}^{n} a^{2i} \sum_{x \in M_{i}} (\mathcal{T}^{l+1}f)(a^{j}x) \right\| \\ &= \frac{1}{a^{2nj}} \left\| \mathfrak{D}_{1}(\mathcal{T}^{l}f)(a^{j}x_{1},a^{j}x_{2}) \right\| \leq \left(\frac{1}{a^{2nj}}\right)^{l+1} \phi(a^{j(l+1)}x_{1},a^{j(l+1)}x_{2}), \end{split}$$

for all $x_1, x_2 \in V^n$. Letting $l \to \infty$ in (14) and using (8), we reach to $\mathfrak{D}_1 \mathcal{Q}(x_1, x_2) = 0$ for all $x_1, x_2 \in V^n$. This means that the mapping \mathcal{Q} satisfies (6). If \mathcal{Q} has the quadratic condition in each of variable, then it is a multi-quadratic mapping by Theorem 2.1. Finally, assume that $\mathcal{Q}' : V^n \longrightarrow W$ is another multi-quadratic mapping satisfying the equation (6) and inequality (11), and fix $x \in V^n$, $l \in \mathbb{N}$. Then

$$\begin{split} \|\mathcal{Q}(x) - \mathcal{Q}'(x)\| &= \left\| \frac{1}{a^{2njl}} \mathcal{Q}(a^{jl}x) - \frac{1}{a^{2njl}} \mathcal{Q}'(a^{jl}x) \right\| \\ &\leq \frac{1}{a^{2njl}} \left(\|\mathcal{Q}(2^{jl}x) - f(a^{jl}x)\| + \|\mathcal{Q}'(a^{jl}x) - f(a^{jl}x)\| \right) \\ &\leq \frac{2}{a^{2njl}} \Phi(a^{jl}x) \\ &\leq \frac{1}{2^{n-1}a^{n(j+1)}} \sum_{k=l}^{\infty} \left(\frac{1}{a^{2nj}} \right)^k \phi\left(a^{kl + \frac{j-1}{2}} x, 0 \right). \end{split}$$

Now, letting l to infinity and applying the convergency of series (9), we arrive that Q(x) = Q'(x), which completes the proof.

Let A be a nonempty set, (X, d) a metric space, $\psi \in \mathbb{R}^{A^n}_+$, and $\mathcal{F}_1, \mathcal{F}_2$ operators mapping a nonempty set $D \subset X^A$ into X^{A^n} . We say that operator equation

$$\mathcal{F}_1\varphi(a_1,\ldots,a_n) = \mathcal{F}_2\varphi(a_1,\ldots,a_n) \tag{15}$$

is ψ -hyperstable provided every $\varphi_0 \in D$ satisfying inequality

$$d(\mathcal{F}_1\varphi_0(a_1,\ldots,a_n),\mathcal{F}_2\varphi_0(a_1,\ldots,a_n)) \le \psi(a_1,\ldots,a_n), \qquad a_1,\ldots,a_n \in A$$

fulfills (15); this definition is introduced in [8]. In other words, a functional equation \mathcal{F} is *hyperstable* if any mapping f satisfying the equation \mathcal{F} approximately is a true solution of \mathcal{F} .

In the incoming example, we show that equation (6) is stable and hyperstable.

Example 3.1. Let δ and ε be non-negative real numbers. Suppose that $\alpha, \alpha_{ij} > 0$ for $i \in \{1, 2\}$ and $j \in \{1, \ldots, n\}$ fulfill $\sum_{i=1}^{2} \sum_{j=1}^{n} \alpha_{ij} \neq 2n$ and $\alpha \neq 2n$. Let V be a normed space and W be a Banach space. If $f: V^n \longrightarrow W$ is a mapping with zero condition satisfying the inequality

$$\|\mathfrak{D}_1 f(x_1, x_2)\| \le \sum_{i=1}^2 \sum_{j=1}^n \|x_{ij}\|^{\alpha} \varepsilon + \prod_{i=1}^2 \prod_{j=1}^n \|x_{ij}\|^{\alpha_{ij}} \delta,$$

for all $x_1, x_2 \in V^n$. Then, there exists a solution $\mathcal{Q}: V^n \longrightarrow W$ of (6) such that

$$||f(x) - \mathcal{Q}(x)|| \le \frac{\delta}{2^n |a^{2n} - a^{\alpha}|} \sum_{j=1}^n ||x_{1j}||^{\alpha}$$

In particular, if Q has the quadratic condition in each of variable, then it is a unique multi-quadratic mapping. In the case that $\varepsilon = 0$, then f is multi-quadratic. If moreover

$$\left\|\mathfrak{D}_1 f(x_1, x_2)\right\| \le \varepsilon,$$

for all $x_1, x_2 \in V^n$, then there exists a solution $\mathcal{Q}: V^n \longrightarrow W$ of (6) such that

$$||f(x) - \mathcal{Q}(x)|| \le \frac{\varepsilon}{2^n(a^{2n}-1)},$$

for all $x \in V^n$.

We have the next stability result regarding equation (7) which is analogous to Theorem 3.2 without zero condition. Since the proof is similar, we include only some parts.

Theorem 3.3. Let $j \in \{-1, 1\}$, V be a linear space and W be a Banach space. Suppose that $\phi: V^n \times V^n \longrightarrow \mathbb{R}_+$ is a mapping satisfying

$$\lim_{l \to \infty} \left(\frac{1}{a^{2nj}}\right)^l \phi(a^{jl}x_1, a^{jl}x_2) = 0,$$

for all $x_1, x_2 \in V^n$. If $f: V^n \longrightarrow W$ is a mapping satisfies the inequality

$$\|\mathfrak{D}_2 f(x_1, x_2)\| \le \phi(x_1, x_2),$$

for all $x_1, x_2 \in V^n$, then there exists a solution $\mathcal{Q}: V^n \longrightarrow W$ of (7) such that

$$\|f(x) - \mathcal{Q}(x)\| \le \Phi(x)$$

for all $x \in V^n$, where

$$\Phi(x) = \frac{1}{a^{n(j+1)}} \sum_{l=0}^{\infty} \left(\frac{1}{a^{2nj}}\right)^l \phi\left(a^{jl+\frac{j-1}{2}}x, 0\right) < \infty.$$

If Q has the quadratic condition in each of variable, then it is unique multi-quadratic.

PROOF. Putting $x = x_1$ and $x_2 = 0$ in (10), we get

$$\left\| 2^n f(ax) - \left(\sum_{k=0}^n \binom{n}{k} 2^{n-k} (2a^2 - 2)^k \right) f(x) \right\| \le \phi(x, 0), \tag{16}$$

for all $x \in V^n$ and t > 0. An easy computation shows that

$$\sum_{k=0}^{n} \binom{n}{k} 2^{n-k} (2m^2 - 2)^k = (2m^2)^n.$$
(17)

It follows from (16) and (17) that

$$\left\|2^{n}f(ax) - 2^{n}a^{2n}f(x)\right\| \le \phi(x,0).$$

for all $x \in V^n$. The proof of Theorem 3.2 can be repeated to finalize this proof. \Box

According to Theorem 3.3, we observe that Example 3.1 has the similar results for equation (7) as a directed result of the mentioned theorem.

Acknowledgment

The author express her sincere thanks to the reviewers for the careful and detailed reading of the manuscript and very helpful suggestions that improved the manuscript substantially.

References

- T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan., 2 (1950), 64–66.
- [2] M. Arunkumar, A. Bodaghi, J. M. Rassias, and E. Sathya, The general solution and approximations of a decic type functional equation in various normed spaces, J. Chung. Math. Soc., 29(1) (2016), 287–328.
- [3] A. Bodaghi, Stability of a mixed type additive and quartic functional equation, Filomat, 28 (2014), 1629–1640.
- [4] A. Bodaghi and I. A. Alias, Approximate ternary quadratic derivations on ternary Banach algebras and C^{*}-ternary rings, Adv. Diff. Equa., 2012(1) (2012), 9 pages.
- [5] A. Bodaghi, I. A. Alias, and M. H. Ghahramani, Approximately cubic functional equations and cubic multipliers, J. Inequ. Appl., 2011 (2011), Paper No. 53.
- [6] A. Bodaghi, C. Park, and S. Yun, Almost multi-quadratic mappings in non-Archimedean spaces, AIMS Math., 5(5) (2020), 5230–5239.
- [7] J. Brzdęk, J. Chudziak, and Zs. Páles, A fixed point approach to stability of functional equations, Nonlinear Anal., 74 (2011), 6728–6732.
- [8] J. Brzdęk and K. Ciepliński, Hyperstability and superstability, Abstr. Appl. Anal., 2013 (2013), Art. ID. 401756, 13 pp.
- K. Ciepliński, On the generalized Hyers-Ulam stability of multi-quadratic mappings, Comput. Math. Appl., 62 (2011), 3418–3426.
- [10] S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Hamburg, 62 (1992), 59–64.
- [11] N. J. Daras and Th. M. Rassias, Approximation and computation in science and Eengineering, Series Springer Optimization and Its Applications (SOIA). Vol. 180, Springer 2022.
- [12] P. Găvruţa, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184(3) (1994), 431–436.
- [13] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. USA., 27 (1941), 222–224.
- [14] P. Kannappan, Functional equations and inequalities with applications, Springer, 2009.
- [15] C. Park, A. Bodaghi, and I. A. Alias, Random stability and hyperstability of multi-quadratic mappings, J. Math. Inequ., 16(3) (2022), 993–1004.
- [16] J. M. Rassias, E. Sathya, and M. Arunkumar, Generalized Ulam-Hyers stability of an alternate additive-quadratic-quartic functional equation in fuzzy Banach spaces, Math. Anal. Cont. Appl., 3(1) (2021), 13–31.
- [17] J. M. Rassias, M. Arunkumar, and E. Sathya, Non-stabilities of mixed type Euler-Lagrange k-cubic-quartic functional equation in various normed spaces, Math. Anal. Cont. Appl., 1(1) (2019), 1–43.
- [18] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72(2) (1978), 297–300.

- [19] P. K. Sahoo and P. Kannappan, Introduction to functional equations, CRC Press, Boca Raton, FL, 2011.
- [20] F. Skof, Proprieta locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano, 53 (1983), 113–129.
- [21] S. Salimi and A. Bodaghi, A fixed point application for the stability and hyperstability of multi-Jensen-quadratic mappings, J. Fixed Point Theory Appl., 2020 (2020).
- [22] S. M. Ulam, Problems in modern mathematics, Chapter VI, Science Ed., Wiley, New York, 1940.
- [23] X. Zhao, X. Yang and C.-T. Pang, Solution and stability of the multiquadratic functional equation, Abstr. Appl. Anal., (2013) Art. ID 415053, 8 pp.

DEPARTMENT OF MATHEMATICS, WEST TEHRAN BRANCH, ISLAMIC AZAD UNIVERSITY, TEHRAN, IRAN

Email address: maryam.mazdarani@gmail.com,

Received : December 2023 Accepted : March 2024