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Stability of two multi-quadratic mappings by a

fixed point method

Maryam Mazdarani

Abstract. In this paper, the Găvruţa stability of two multi-quadratic functional

equations are established by a known fixed point theorem. As an example, the

Hyers-Ulam, Rassias stability and hyperstability of the mentioned mappings are

proved in the setting of Banach spaces.

1. Introduction

In 1940, Ulam [22] asked the question concerning the stability of group homo-

morphisms. The famous Ulam stability problem was partially solved by Hyers [13]

for the linear functional equation of Banach spaces. Hyers’ theorem was generalized

by Aoki [1] for additive mappings and by Th. M. Rassias [18] for linear mappings

by considering an unbounded Cauchy difference. A generalization of the Rassias

theorem was obtained by Găvruţa [12] by replacing the unbounded Cauchy differ-

ence by a general control function in the spirit of Rassias approach. Recall that an

equation is stable in some class of functions if any function from that class, satisfy-

ing the equation approximately (in some sense), is near (in some way) to an exact

solution of the equation. A lot of information about various functional equations

can be found for instance in papers and books [2, 3, 5, 14, 16, 17, 19] and also

references therein.
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The stability problem for quadratic functional equation

Q(x+ y) +Q(x− y) = 2Q(x) + 2Q(y) (1)

has been studied in normed spaces by Skof [20] with a constant bound. Thereafter,

Czerwik [10] proved the Hyers-Ulam stability of the quadratic functional equation

with a nonconstant bound. Some different versions of quadratic functional equation

(1) and its stabilities with applications are available in [4, 11] and other resources.

A general form of (1), say the generalized quadratic functional equation is as

follows:

Q(ax+ y) +Q(ax− y) = 2a2Q(x) + 2Q(y), (2)

where a is a fixed non-zero number in Q. Moreover, the different form of a quadratic

functional equation was presented in [15] as follows:

Q(ax+ y) +Q(ax− y) = Q(x+ y) +Q(x− y) + 2
(
a2 − 1

)
Q(x), (3)

where, a is a fixed integer with a ̸= 0,±1.

Let V be a commutative group, W be a linear space, and n ≥ 2 be an integer.

For the set X, we denote

n−times︷ ︸︸ ︷
X ×X × · · · ×X by Xn. For any l ∈ N0, n ∈ N, t =

(t1, · · · , tn) ∈ {−1, 1}n and x = (x1, · · · , xn) ∈ V n we write lx := (lx1, · · · , lxn)
and tx := (t1x1, · · · , tnxn). Recall that a mapping f : V n −→ W is called multi-

quadratic if it is quadratic (satisfying quadratic functional equation (1)) in each

component. It is shown in [23] that the system of functional equations defining a

multi-quadratic mappings can be unified as a single equation. Indeed, Zhao et al.

proved that the mapping f : V n −→ W is multi-quadratic if and only if the relation∑
s∈{−1,1}n

f(x1 + sx2) = 2n
∑

j1,j2,...,jn∈{1,2}

f(x1j1 , x2j2 , . . . , xnjn)

holds, where xj = (x1j, x2j, . . . , xnj) ∈ V n with j ∈ {1, 2}. Various versions of

multi-quadratic mappings were introduced and studied for example in [6], [9] and

[21].

In this paper, we establish the Găvruţa stability of multi-quadratic functional

equations (taken from (2) and (3) introduced in [6] and [15]) by a known fixed

point theorem. As some corollaries, we prove the Hyers-Ulam, Rassias stability and

hyperstability of the mentioned mappings in the setting of Banach spaces.

2. Preliminary notations

We commence this section with the following definition which was defined in [6]

and [15]. Throughout this section, assume that V and W are vector spaces over Q
(the rationals).
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Definition 2.1. Let n ∈ N. Suppose that a mapping f : V n −→ W is given.

Then

(i) (see [6].) f is called n-quadratic or multi-quadratic (the first kind) if f is

quadratic in each variable (see equation (2));

(ii) (see [15].) f is called n-quadratic or multi-quadratic (the second kind) if f

is quadratic in each variable (see equation (3)).

Let n ∈ N and xni = (xi1, xi2, . . . , xin) ∈ V n, where i ∈ {1, 2}. Let lj ∈ {1, 2}.
Put

Mn
i = {x = (xl11, xl22, . . . , xlnn) ∈ V n|Card{lj : lj = 1} = i}. (4)

We shall denote xni and Mn
i by xi and Mi, respectively if there is no risk of

ambiguity. Let x1, x2 ∈ V n and k ∈ N0 with 0 ≤ k ≤ n. Put

A = {An = (A1, . . . , An)| Aj ∈ {x1j ± x2j, x1j}} ,

where j ∈ {1, . . . , n}. Consider An
k := {An ∈ A| Card{Aj : Aj = x1j} = k} . For

a multi-quadratic mapping (the second kind) f : V n −→ W we use the following

notation:

f (An
k) :=

∑
An∈An

k

f(An), (5)

Let a be fixed non-zero number in Q. Recall that a mapping f : V n −→ W

satisfies (has) the quartic condition in the jth variable if

f(x1, . . . , xj−1, axj, xj+1, . . . , xn) = a2f(x1, . . . , xj−1, xj, xj+1, . . . , xn),

for all x1, . . . , xn ∈ V and for all j ∈ {1, . . . , n}. The following result was proved in

[6, Theorem 2.2].

Theorem 2.1. Consider the mapping f : V n −→ W . Then, the following

assertions are equivalent:

(i) f is multi-quadratic (the first kind);

(ii) f satisfies equation∑
q∈{−1,1}n

f(ax1 + qx2) = 2n
n∑

i=0

a2i
∑
x∈Mi

f(x), (6)

with the quadratic condition in all variables, where Mi is defined in (4) and

a is a fixed non-zero number in Q.

The following result was proved in [15, Theorem 3.3].

Proposition 2.2. Consider the mapping f : V n −→ W . Then, the following

assertions are equivalent:

(i) f is multi-quadratic (the second kind);
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(ii) f satisfies equation∑
q∈{−1,1}n

f(ax1 + qx2) =
n∑

k=0

(
2m2 − 2

)k
f (An

k) , (7)

with the quadratic condition in each variable, where f (An
k) is defined in (5)

and a is a fixed integer with a ̸= 0,±1.

A direct consequence of Theorem 2.1 and Proposition 2.2 is indicated as follows:

Corollary 2.3. Suppose that mapping f : V n −→ W is given with the quadratic

condition in each variable. Then, f satisfies equation (6) if and only if it fulfills

equation (7).

3. Găvruţa and Rassias Stability results

In this section, we study the various stabilities of equations (6) and (7). From

now on, for two sets X and Y , the set of all mappings from X to Y is denoted by

Y X .Here, we indicate the following theorem which is a fundamental result in fixed

point theory [7, Theorem 1]. This result plays a key tool in obtaining our objective

in this section.

Theorem 3.1. Given the hypotheses

(A1) Y is a Banach space, S is a nonempty set, j ∈ N, g1, ..., gj : S −→ S and

L1, ..., Lj : S −→ R+,

(A2) T : Y S −→ Y S is an operator satisfying the inequality

∥T λ(x)− T µ(x)∥ ≤
j∑

i=1

Li(x) ∥λ(gi(x))− µ(gi(x))∥ , λ, µ ∈ Y S , x ∈ S,

(A3) Λ : RS
+ −→ RS

+ is an operator defined through

Λδ(x) :=

j∑
i=1

Li(x)δ(gi(x)) δ ∈ RS
+, x ∈ S.

Suppose that a function θ : S −→ R+ and a mapping ϕ : S −→ Y fulfill the next

two properties.

∥T ϕ(x)− ϕ(x)∥ ≤ θ(x), θ∗(x) :=
∞∑
l=0

Λlθ(x) <∞ (x ∈ S).

Then, there exists a unique fixed point ψ of T such that

∥ϕ(x)− ψ(x)∥ ≤ θ∗(x) (x ∈ S).

Moreover, ψ(x) = liml→∞ T lϕ(x) for all x ∈ S.
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For a mapping f : V n −→ W , we define two operators D1f and D2f from

V n × V n into W via

D1f(x1, x2) :=
∑

q∈{−1,1}n
f(ax1 + qx2)− 2n

n∑
i=0

a2i
∑
x∈Mi

f(x),

and

D2f(x1, x2) :=
∑

q∈{−1,1}n
f(ax1 + qx2)−

n∑
k=0

(
2a2 − 2

)k
f (An

k)

where Mi and f (An
k) are defined in (4) and (5), respectively in which a is a fixed

integer with a ̸= 0,±1.

We say a mapping f : V n −→ W has zero condition or zero functional equation

if f(v) = 0 for any v ∈ V n with at least one component which is equal to zero. With

notations above, we have the following Găvruţa stability for functional equations

(6) and (7).

Theorem 3.2. Let j ∈ {−1, 1}, V be a linear space and W be a Banach space.

Suppose that ϕ : V n × V n −→ R+ is a mapping satisfying

lim
l→∞

(
1

a2nj

)l

ϕ(ajlx1, a
jlx2) = 0, (8)

for all x1, x2 ∈ V n and

Φ(x) =
1

2nan(j+1)

∞∑
l=0

(
1

a2nj

)l

ϕ
(
ajl+

j−1
2 x, 0

)
<∞, (9)

for all x ∈ V n. If f : V n −→ W is a mapping with zero condition fulfilling the

inequality

∥D1f(x1, x2)∥ ≤ ϕ(x1, x2), (10)

for all x1, x2 ∈ V n, then there exists a solution Q : V n −→ W of (6) such that

∥f(x)−Q(x)∥ ≤ Φ(x), (11)

for all x ∈ V n. If Q has the quadratic condition in each of variable, then it is unique

multi-quadratic.

Proof. Putting x = x1 and x2 = 0 in (10), we get∥∥2nf(ax)− 2na2nf(x)
∥∥ ≤ ϕ(x, 0), (12)

for all x ∈ V n (here and the rest of the proof). Inequality (12) can be rewritten as

follows:
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∥∥∥f(ax)

a2n
− f(x)

∥∥∥ ≤ 1
2na2n

ϕ(x, 0),

∥a2nf(ax)− f(x)∥ ≤ 1
2n
ϕ(x, 0).

Set ξ(x) := 1
2nan(j+1)ϕ

(
a

j−1
2 x, 0

)
and T ξ(x) := 1

a2nj ξ(a
jx), where ξ ∈ W V n

. A

modification of (12) shows that ∥f(x)− T f(x)∥ ≤ ξ(x). Define Λη(x) := 1
a2nj η(a

jx)

for all η ∈ RV n

+ . Considering S = V n, g1(x) = ajx and L1(x) =
1

a2nj in (A3), we find

that Λ has the formation in (A3). On the other hand, we obtain

∥T λ(x)− T µ(x)∥ =

∥∥∥∥ 1

a2nj
[
λ(ajx)− µ(ajx)

]∥∥∥∥ ≤ L1(x) ∥λ(g1(x))− µ(g1(x))∥ .

for all λ, µ ∈ W V n
. The relation above leads us to validity of hypothesis (A2) for

T . It is easily verified that by induction on l ∈ N0 that

Λlξ(x) :=

(
1

2na2nj

)l

ξ(ajlx) =
1

an(j+1)

(
1

a2nj

)l

ϕ
(
ajl+

j−1
2 x, 0

)
. (13)

It now follows that all assumptions of Theorem 3.1 are satisfied by applying (9) and

(13) and thus there exists a mapping Q : V n −→ W such that

Q(x) = lim
l→∞

(T lf)(x) =
1

a2nj
Q(ajx)

and (11) holds as well. We claim that the following inequality is true for each

x1, x2 ∈ V n and l ∈ N0.

∥D1(T lf)(x1, x2)∥ ≤
(

1

a2nj

)l

ϕ(ajlx1, a
jlx2). (14)

The argument is based on induction. Inequality (10) shows that (14) is true for

l = 0. Assume that (14) is valid for an l ∈ N0. We have

∥D1(T l+1f)(x1, x2)∥

=

∥∥∥∥∥∥
∑

q∈{−1,1}n
(T l+1f)(ax1 + qx2)− 2n

n∑
i=0

a2i
∑
x∈Mi

(T l+1f)(x)

∥∥∥∥∥∥
=

1

a2nj

∥∥∥∥∥∥
∑

q∈{−1,1}n
(T l+1f)(aj(ax1 + qx2))− 2n

n∑
i=0

a2i
∑
x∈Mi

(T l+1f)(ajx)

∥∥∥∥∥∥
=

1

a2nj
∥∥D1(T lf)(ajx1, a

jx2)
∥∥ ≤

(
1

a2nj

)l+1

ϕ(aj(l+1)x1, a
j(l+1)x2),

for all x1, x2 ∈ V n. Letting l → ∞ in (14) and using (8), we reach toD1Q(x1, x2) = 0

for all x1, x2 ∈ V n. This means that the mapping Q satisfies (6). If Q has the

quadratic condition in each of variable, then it is a multi-quadratic mapping by
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Theorem 2.1. Finally, assume that Q′ : V n −→ W is another multi-quadratic

mapping satisfying the equation (6) and inequality (11), and fix x ∈ V n, l ∈ N.
Then

∥Q(x)−Q′(x)∥ =

∥∥∥∥ 1

a2njl
Q(ajlx)− 1

a2njl
Q′(ajlx)

∥∥∥∥
≤ 1

a2njl
(
∥Q(2jlx)− f(ajlx)∥+ ∥Q′(ajlx)− f(ajlx)∥

)
≤ 2

a2njl
Φ(ajlx)

≤ 1

2n−1an(j+1)

∞∑
k=l

(
1

a2nj

)k

ϕ
(
akl+

j−1
2 x, 0

)
.

Now, letting l to infinity and applying the convergency of series (9), we arrive that

Q(x) = Q′(x), which completes the proof. □

Let A be a nonempty set, (X, d) a metric space, ψ ∈ RAn

+ , and F1,F2 operators

mapping a nonempty set D ⊂ XA into XAn
. We say that operator equation

F1φ(a1, . . . , an) = F2φ(a1, . . . , an) (15)

is ψ-hyperstable provided every φ0 ∈ D satisfying inequality

d(F1φ0(a1, . . . , an),F2φ0(a1, . . . , an)) ≤ ψ(a1, . . . , an), a1, . . . , an ∈ A

fulfills (15); this definition is introduced in [8]. In other words, a functional equation

F is hyperstable if any mapping f satisfying the equation F approximately is a true

solution of F .

In the incoming example, we show that equation (6) is stable and hyperstable.

Example 3.1. Let δ and ε be non-negative real numbers. Suppose that α, αij >

0 for i ∈ {1, 2} and j ∈ {1, . . . , n} fulfill
∑2

i=1

∑n
j=1 αij ̸= 2n and α ̸= 2n. Let V be

a normed space and W be a Banach space. If f : V n −→ W is a mapping with zero

condition satisfying the inequality

∥D1f(x1, x2)∥ ≤
2∑

i=1

n∑
j=1

∥xij∥αε+
2∏

i=1

n∏
j=1

∥xij∥αijδ,

for all x1, x2 ∈ V n. Then, there exists a solution Q : V n −→ W of (6) such that

∥f(x)−Q(x)∥ ≤ δ

2n|a2n − aα|

n∑
j=1

∥x1j∥α.

In particular, if Q has the quadratic condition in each of variable, then it is a

unique multi-quadratic mapping. In the case that ε = 0, then f is multi-quadratic.

If moreover

∥D1f(x1, x2)∥ ≤ ε,
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for all x1, x2 ∈ V n, then there exists a solution Q : V n −→ W of (6) such that

∥f(x)−Q(x)∥ ≤ ε

2n(a2n − 1)
,

for all x ∈ V n.

We have the next stability result regarding equation (7) which is analogous to

Theorem 3.2 without zero condition. Since the proof is similar, we include only

some parts.

Theorem 3.3. Let j ∈ {−1, 1}, V be a linear space and W be a Banach space.

Suppose that ϕ : V n × V n −→ R+ is a mapping satisfying

lim
l→∞

(
1

a2nj

)l

ϕ(ajlx1, a
jlx2) = 0,

for all x1, x2 ∈ V n. If f : V n −→ W is a mapping satisfies the inequality

∥D2f(x1, x2)∥ ≤ ϕ(x1, x2),

for all x1, x2 ∈ V n, then there exists a solution Q : V n −→ W of (7) such that

∥f(x)−Q(x)∥ ≤ Φ(x)

for all x ∈ V n, where

Φ(x) =
1

an(j+1)

∞∑
l=0

(
1

a2nj

)l

ϕ
(
ajl+

j−1
2 x, 0

)
<∞.

If Q has the quadratic condition in each of variable, then it is unique multi-quadratic.

Proof. Putting x = x1 and x2 = 0 in (10), we get∥∥∥∥∥2nf(ax)−
(

n∑
k=0

(
n

k

)
2n−k(2a2 − 2)k

)
f(x)

∥∥∥∥∥ ≤ ϕ(x, 0), (16)

for all x ∈ V n and t > 0. An easy computation shows that

n∑
k=0

(
n

k

)
2n−k(2m2 − 2)k = (2m2)n. (17)

It follows from (16) and (17) that∥∥2nf(ax)− 2na2nf(x)
∥∥ ≤ ϕ(x, 0).

for all x ∈ V n. The proof of Theorem 3.2 can be repeated to finalize this proof. □

According to Theorem 3.3, we observe that Example 3.1 has the similar results

for equation (7) as a directed result of the mentioned theorem.
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