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Fixed point theorems in intuitionistic fuzzy

2-metric spaces

Jeyaraman Mathuraiveeran

Abstract. In the paper, we find some fixed point theorem in intuitionistic fuzzy

2- metric spaces on four mappings and six mappings with the help of theory of

sub compatible of type (A).

1. Introduction

Atanassov [3] introduced and studied the concept of intuitionistic fuzzy sets as

a generalization of fuzzy sets [15]. In 2004, Park [10] defined the notion of intu-

itionistic fuzzy metric space with the help of continuous t-norms and continuous

t-conorms. Recently, in 2006, Alaca et al. [1] Using the idea of intuitionistic fuzzy

sets, defined the notion of intuitionistic fuzzy metric space with the help of contin-

uous t-norm and continuous t-conorm as a generalization of fuzzy metric space due

to Kramosil and Michalek [6]. Further, Alaca et al. [1] proved intuitionistic fuzzy

Banach and intuitionistic fuzzy Edelstein contraction theorems, with the different

definition of Cauchy sequences and completeness than the ones given . The idea of

fuzzy 2-metric space and fuzzy 3-metric space was used by Sushil Sharma [13] and

obtained some fruitful results. The concept of compatibility in fuzzy metric space is

initiated by Singh and Chauhan and also derived some common fixed point theorem
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in that space. Jain and Singh [4], Jungck et al. [6] explained about fixed point

theorem for compatible mappings of type (A) in fuzzy metric space. We find some

fixed point theorem in intuitionistic fuzzy 2-metric spaces on four and six mappings

with the help of sub compatible of type (A) with the help of example.

2. Preliminaries

Definition 2.1. A binary operation ∗ : [0, 1] × [0, 1] → [0, 1] is a continuous

t-norm if ∗ is satisfying the following conditions:

i) ∗ is a commutative and associative,

ii) ∗ is continuous,

iii) a ∗ 1 = a for all a ∈ [0, 1],

iv) a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d, for all a, b, c, d ∈ [0, 1].

Definition 2.2. A binary operation ♢ : [0, 1] × [0, 1] → [0, 1] is said to be a

continuous t- conorm if it satisfies the following conditions:

(i) ♢ is associative and commutative.

(ii) ♢ is continuous.

(iii) a♢0 = a for all a ∈ [0, 1]

(iv) a♢b ≤ c♢d whenever a ≤ c and b ≤ d, for each a, b, c, d ∈ [0, 1]

Definition 2.3. A 5-tuple (X,M,N, ∗,♢) is said to be an intuitionistic fuzzy

metric space if X is an arbitrary set, ∗ is a continuous t-norm, ♢ is a continuous

t-conorm and M, N are fuzzy sets on X2×(0,∞) satisfying the following conditions:

for all x, y, z ∈ X and t, s > 0,

(1) M(x, y, t) +N(x, y, t) ≤ 1.

(2) M(x, y, 0) = 0 for all x, y in X.

(3) M(x, y, t) = 1 for all x, y in X and t > 0 if and only if x = y.

(4) M(x, y, t) = M(y, x, t), for all x, y in X and t > 0.

(5) M(x, y, t) ∗M(y, z, s) ≤ M(x, z, t+ s).

(6) M(x, y, .) : [0,∞) → [0, 1] is left continuous.

(7) lim
t→∞

M(x, y, t) = 1 for all x, y in X and t > 0.

(8) N(x, y, 0) = 1 for all x, y in X.

(9) N(x, y, t) = 0 for all x, y in X and t > 0 if and only if x = y.

(10) N(x, y, t) = N(y, x, t), for all x, y in X and t > 0.

(11) N(x, y, t)♢N(y, z, s) ≥ N(x, z, t+ s).

(12) N(x, y, .) : [0,∞) → [0, 1] is right continuous.

(13) lim
t→∞

N(x, y, t) = 0 for all x, y in X and t > 0.

Then (M,N) is called an intuitionistic fuzzy metric onX. The functionsM(x, y, t)

and N(x, y, t) denote the degree of nearness and degree of non-nearness between x

and y with respect to t, respectively.
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Example 2.1. Let (X, d) be a metric space. Define t-norm a ∗ b = min{a, b}
and t-conorm a♢b = max{a, b} and for all x, y ∈ X and t > 0,Md(x, y, t) =

t
t+d(x,y)

, Nd(x, y, t) = d(x,y)
t+d(x,y)

. Then (X,M,N, ∗,♢) is an IFM-space and the in-

tuitionistic fuzzy metric space (M,N) induced by the metric d is often referred to as

the standard intuitionistic fuzzy metric.

Definition 2.4. A sequence {xn} in a intuitionistic fuzzy 2-metric space (X,M,N, ∗,♢)
is said to be converge to x in X iff lim

n→∞
M(xn, x, a, t) = 1 and lim

n→∞
N(xn, x, a, t) = 0,

for all a ∈ X and t > 0.

Definition 2.5. Let (X,M,N, ∗,♢) be a intuitionistic fuzzy 2- metric space. A

sequence {xn} in X is called Cauchy sequence, iff

lim
n→∞

M(xn+p, xp, a, t) = 1 and lim
n→∞

N(xn+p, xp, a, t) = 0,

for all a ∈ X and p > 0, t > 0.

Definition 2.6. A intuitionistic fuzzy 2-metric space (X,M,N, ∗,♢) is said to

be complete iff every Cauchy sequence in X is convergent in X.

Lemma 2.2. In an intuitionistic fuzzy metric space X,M(x, y, .) is non-decreasing

and N(x, y, .) is non-increasing for all x, y ∈ X.

Lemma 2.3. Let (X,M,N, ∗,♢) be an intuitionistic fuzzy metric space. If there

exists a constant k ∈ (0, 1) such that

M(x, y, a, kt) ≥ M(x, y, a, t), N(x, y, a, kt) ≤ N(x, y, a, t),

for x, y ∈ X. Then x = y.

Definition 2.7. Self-mappings A and S of a intuitionistic fuzzy metric space

(X,M,N, ∗,♢) are said to be sub compatible if there exists a sequence {xn} in X

such that lim
n→∞

Axn = lim
n→∞

Sxn = z, z ∈ X and satisfy lim
n→∞

M(ASxn, SAxn, t) = 1

and lim
n→∞

N(ASxn, SAxn, t) = 0.

3. Main Results

Theorem 3.1. Consider four self-mappings A,B, U and V of a intuitionistic

fuzzy 2- metric space (X,F,G, ∗,♢) with continuous t-norm ∗ and continuous t-

corm ♢ defined by t ∗ t ≥ t and (1 − t)♢(1 − t) ≤ (1 − t) every one t, 0 ≤ t ≤ 1.

If the couples (A,U) and (B, V ) be sub compatible of type (A) with the identical

coincidence points and AB = BA,BU = UB,UV = V U,AU = UA,AV = V A, for

all x, y, z ∈ X, k ∈ (0, 1) and t > 0 with

(3.1.1) F (Ux, V y, z, kt) ≥ min

{
F (Ax,By, z, t), F (Ax,Ux, z, t),

F (V x,By, z, t), F (Ux,Ay, z, t)

}
,
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(3.1.2) G(Ux, V y, z, kt) ≤ max

{
G(Ax,By, z, t), G(Ax,Ux, z, t),

G(V x,By, z, t), G(Ux,Ay, z, t)

}
.

Then in X, the maps A, B, U and V have common unique Fixed Point.

Proof. We know that the couples (A,U) and (B, V ) be sub compatible of type

(A) then readily available 2-sequences {xn} and {yn} inside X with

lim
n→∞

Axn = lim
n→∞

Uxn = a,

where a is in X and

lim
n→∞

F (AUxn, UUxn, z, t) = 1, lim
n→∞

G(AUxn, UUxn, z, t) = 0,

also

lim
n→∞

F (UAxn, UUxn, z, t) = 1, lim
n→∞

G(UAxn, UUxn, z, t) = 0.

Hence

lim
n→∞

F (Aa, Ua, z, t) = 1, lim
n→∞

G(Aa, Ua, z, t) = 0,

lim
n→∞

F (Ua,Aa, z, t) = 1 and lim
n→∞

G(Ua,Aa, z, t) = 0

and

limByn = limV yn = b,

b is in X and hold the following limit,

lim
n→∞

F (BV yn, V V yn, z, t) = 1, lim
n→∞

G(BV yn, V V yn, z, t) = 0,

lim
n→∞

F (V Byn, V V yn, z, t) = 1 and lim
n→∞

G(V Byn, V V yn, z, t) = 0.

Hence lim
n→∞

F (Bb, V b, z, t) = 1, lim
n→∞

G(Bb, V b, z, t) = 0, lim
n→∞

F (V b,Bb, z, t) = 1

and lim
n→∞

G(V b,Bb, z, t) = 0.

Thus Aa = Ua&Bb = V b, here a and b respectively are coincidence points of

A,U and B, V . At the present we are to demonstrate that a = b, we substitute

x = xn and y = yn in (3.1.1) and (3.1.2) we get

F (Uxn, V yn, z, kt) ≥ min

{
F (Axn, Byn, z, t), F (Axn, Uxn, z, t),

F (V yn, Byn, z, t), F (Uxn, Ayn, z, t)

}
,

G(Uxn, V yn, z, kt) ≤ max

{
G(Axn, Byn, z, t), G(Axn, Uxn, z, t),

G(V yn, Byn, z, t), G(Uxn, Ayn, z, t)

}
.

Applying the limiting as n tends to infinity, we obtain

F (a, b, z, kt) ≥ min

{
F (a, b, z, t), F (a, a, z, t),

F (b, b, z, t), F (a, b, z, t)

}
,

G(a, b, z, kt) ≤ max

{
G(a, b, z, t), G(a, a, z, t),

G(b, b, z, t), G(a, b, z, t)

}
.
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This shows that

F (a, b, z, kt) ≥ F (a, b, z, t) andG(a, b, z, kt) ≤ G(a, b, z, t) for all t > 0.

Hence besides using lemma (2.3), a equals to b. This indicates that the maps

A,B, U and V have the identical coincidence point. After that we are to demonstrate

Aa = Ba = Ua = V a = a.

First we take x = a and also y = yn in the equation (3.1.1) and (3.1.2), we search

out

F (Ua, V yn, z, kt) ≥ min

{
F (Aa,Byn, z, t), F (Aa, Ua, z, t),

F (V yn, Byn, z, t), F (Ua,Ayn, z, t)

}
,

G(Ua, V yn, z, kt) ≤ max

{
G(Aa,Byn, z, t), G(Aa, Ua, z, t),

G(V yn, Byn, z, t), G(Ua,Ayn, z, t)

}
.

Applying limit as n → ∞ on both side, we get

F (Ua, b, z, kt) ≥ min

{
F (Aa, b, z, t), F (Aa, Ua, z, t),

F (b, b, z, t), F (Ua, b, z, t)

}
,

≥ min

{
F (Ua, b, z, t), F (Ua, Ua, z, t),

F (b, b, z, t), F (Ua, b, z, t)

}
.

G(Ua, b, z, kt) ≤ max

{
G(Aa, b, z, t), G(Aa, Ua, z, t),

G(b, b, z, t), G(Ua, b, z, t)

}
,

≤ max

{
G(Ua, b, z, t), G(Ua, Ua, z, t),

G(b, b, z, t), G(Ua, b, z, t)

}
.

As a = b then

F (Ua, a, z, kt) ≥ F (Ua, a, z, t) andG(Ua, a, z, kt) ≤ G(Ua, a, z, t).

This gives, Ua = a ie., Ua = Aa = a. Now, we substitute x = xn and y = a in

(3.1.1) and (3.1.2), we obtain

F (Uxn, V a, z, kt) ≥ min

{
F (Axn, Ba, z, t), F (Axn, Uxn, z, t),

F (V a,Ba, z, t), F (Uxn, Aa, z, t)

}
,

G(Uxn, V a, z, kt) ≤ max

{
G(Axn, Ba, z, t), G(Axn, Uxn, z, t),

G(V a,Ba, z, t), G(Uxn, Aa, z, t)

}
.
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Now, limiting on both side as n → ∞, we obtain

F (a, V a, z, kt) ≥ min

{
F (a,Ba, z, t), F (a, a, z, t),

F (V a,Ba, z, t), F (a,Aa, z, t

}
,

≥ min

{
F (a, a, z, t), F (a, a, z, t),

F (V a, a, z, t), F (a, a, z, t)

}
.

⇒ F (V a, a, z, kt) ≥ F (V a, a, z, t).

G(a, V a, z, kt) ≤ max

{
G(a,Ba, z, t), G(a, a, z, t),

G(V a,Ba, z, t), G(a,Aa, z, t)

}
,

≤ max

{
G(a, a, z, t), G(a, a, z, t),

G(V a, a, z, t), G(a, a, z, t)

}
.

⇒ G(V a, a, z, kt) ≤ G(V a, a, z, t).

Which gives, V a = a, that is V a = Ba = a. Hence we get Aa = Ua = V a =

Ba = a. □

Theorem 3.2. Consider six self-mappings P, A, Q, B, P, T and S of a intuition-

istic fuzzy 2- metric space (X,F,G, ∗,♢) with continuous t-norm ∗ and continuous

t-corm ♢ defined by t∗t ≥ t and (1−t)♢(1−t) ≤ (1−t), for every one t in [0, 1]. If the

couples (AB, S)&(PQ, T ) be sub compatible of type(A) with equal coincidence points

and BS = SB,AB = BA,PQ = QP, TQ = QT,AS = SA,AT = TA, PT = TP

for all x, y, z in X and for k in (0, 1) and t > 0,

(3.2.1) F (Sx, Ty, z, kt) ≥ min

{
F (ABx, PQy, z, t), F (ABx, Sx, z, t),

F (Tx, PQy, z, t), F (Sx,ABy, z, t)

}
(3.2.2) G(Sx, Ty, z, kt) ≤ max

{
G(ABx, PQy, z, t), G(ABx, Sx, z, t),

G(Tx, PQy, z, t), G(Sx,ABy, z, t)

}
at that moment the mappings A, B, P, Q, S and T have a common Fixed Point in

X which is unique also.

Proof. We know that the couples (AB, S)& (PQ, T ) be sub compatible of kind

A then there exist 2 sequences {xn} and {yn} in X with the property lim
n→∞

ABxn =

lim
n→∞

Sxn = a, a ∈ X and lim
n→∞

F (ABSxn, SSxn, z, t) = 1;

lim
n→∞

G(ABSxn, SSxn, z, t) = 0; lim
n→∞

F (SABxn, ABABxn, z, t) = 1

lim
n→∞

G(SABxn, ABABxn, z, t) = 0.

Hence

lim
n→∞

F (ABa, Sa, z, t) = 1; lim
n→∞

G(ABa, Sa, z, t) = 0; lim
n→∞

F (Sa,ABa, z, t) = 1,

lim
n→∞

G(Sa,ABa, z, t) = 0; lim
n→∞

PQyn = lim
n→∞

Tyn = b, b ∈ X
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and satisfy

lim
n→∞

F (PQTyn, TTyn, z, t) = 1; lim
n→∞

G(PQTyn, TTyn, z, t) = 0

lim
n→∞

F (TPQyn, PQPQyn, z, t) = 1, lim
n→∞

G(TPQyn, PQPQyn, z, t) = 0.

Consequently, we obtain

lim
n→∞

F (PQb, Tb, z, t) = 1, lim
n→∞

G(PQb, Tb, z, t) = 0, lim
n→∞

F (Tb, PQb, z, t) = 1

and

lim
n→∞

G(Tb, PQb, z, t) = 0.

So, ABa = Sa and PQb = Tb. Thus coincidence point of AB and S is “a” and

coincidence point of PQ and T is “b”.

At the present, we have to show that a = b, for this substitute x = xn and y = yn
in (3.2.1) and (3.2.2), we obtain

F (Sxn, T yn, z, kt) ≥ min

{
F (ABxn, PQyn, z, t), F (ABxn, Sxn, z, t),

F (Tyn, PQyn, z, t), F (Sxn, AByn, z, t)

}
,

G(Sxn, T yn, z, kt) ≤ max

{
G(ABxn, PQyn, z, t), G(ABxn, Sxn, z, t),

G(Tyn, PQyn, z, t), G(Sxn, AByn, z, t)

}
.

Considering n → ∞ as limiting value, we come across that

F (a, b, z, kt) ≥ min

{
F (a, b, z, t), F (a, a, z, t),

F (b, b, z, t), F (a, b, z, t)

}
,

G(a, b, z, kt) ≤ max

{
G(a, b, z, t), G(a, a, z, t),

G(b, b, z, t), G(a, b, z, t)

}
.

This shows that

F (a, b, z, kt) ≥ F (a, b, z, t) andG(a, b, z, kt) ≤ G(a, b, z, t), for all t > 0.

Then by means of lemma (2.3), a is equal to b. This implies that AB, S, PQ and

T have the equal coincidence point. Next we have to prove that Aa = Ba = Pa =

Qa = Sa = Ta = a. First, we substitute x = a and y = yn in (3.2.1)and (3.2.2), we

obtain

F (Sa, Tyn, z, kt) ≥ min

{
F (ABa, PQyn, z, t), F (ABa, Sa, z, t),

F (Tyn, PQyn, z, t), F (Sa,AByn, z, t)

}
,

G(Sa, Tyn, z, kt) ≤ max

{
G(ABa, PQyn, z, t), G(ABa, Sa, z, t),

G(Tyn, PQyn, z, t), G(Sa,AByn, z, t)

}
.
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Applying limit as n → ∞, we obtain

F (Sa, b, z, kt) ≥ min

{
F (ABa, b, z, t), F (ABa, Sa, z, t),

F (b, b, z, t), F (Sa, b, z, t)

}
,

G(Sa, b, z, kt) ≤ max

{
G(ABa, b, z, t), G(ABa, Sa, z, t),

G(b, b, z, t), G(Sa, b, z, t)

}
.

As a = b,

F (Sa, a, z, kt) ≥ F (Sa, a, z, t) andG(Sa, a, z, kt) ≤ G(Sa, a, z, t)

which shows that Sa = a. Now, consider x = xn and y = a in (3.2.1) and (3.2.2),

we obtain

F (Sxn, Ta, z, kt) ≥ min

{
F (ABxn, PQa, z, t), F (ABxn, Sxn, z, t),

F (Ta, PQa, z, t), F (Sxn, ABa, z, t)

}
,

G(Sxn, Ta, z, kt) ≤ max

{
G(ABxn, PQa, z, t), G(ABxn, Sxn, z, t),

G(Ta, PQa, z, t), G(Sxn, ABa, z, t)

}
.

Now, apply limit as n → ∞, we obtain

F (a, Ta, z, kt) ≥ min

{
F (a, PQa, z, t), F (a, a, z, t),

F (Ta, PQa, z, t), F (a,ABa, z, t)

}
≥ min

{
F (a, Ta, z, t), F (a, a, z, t),

F (Ta, Ta, z, t), F (a, Sa, z, t)

}
≥ F (Ta, a, z, t),

G(a, Ta, z, kt) ≤ max

{
G(a, PQa, z, t), G(a, a, z, t),

G(Ta, PQa, z, t), G(a,ABa, z, t)

}
≤ max

{
G(a, Ta, z, t), G(a, a, z, t),

G(Ta, Ta, z, t), G(a, Sa, z, t)

}
≤ G(Ta, a, z, t).

This implies that Ta = a. We show that Aa = Ba = a. Putting x = Ba and

y = yn in (3.2.1) and (3.2.2), we obtain

F (SBa, Tyn, z, kt) ≥ min

{
F (ABBa, PQyn, z, t), F (ABBa, SBa, z, t),

F (Tyn, PQyn, z, t), F (SBa,AByn, z, t)

}
,

G(SBa, Tyn, z, kt) ≤ max

{
G(ABBa, PQyn, z, t), G(ABBa, SBa, z, t),

G(Tyn, PQyn, z, t), G(SBa,AByn, z, t)

}
.
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We know that A,B and S commutes each other. So, ABBa = BABa = BSa =

Ba.

F (Ba, a, z, kt) ≥ min

{
F (Ba, a, z, t), F (Ba,Ba, z, t),

F (a, a, z, t), F (Ba, a, z, t)

}
,

F (Ba, a, z, kt) ≥ F (Ba, a, z, t),

G(Ba, a, z, kt) ≤ max

{
G(Ba, a, z, t), G(Ba,Ba, z, t),

G(a, a, z, t), G(Ba, a, z, t)

}
,

G(Ba, a, z, kt) ≤ G(Ba, a, z, t).

Now put x = Aa and y = yn in (3.2.1) and (3.2.2), we get

F (SAa, Tyn, z, kt) ≥ min

{
F (ABAa, PQyn, z, t), F (ABAa, SAa, z, t),

F (Tyn, PQyn, z, t), F (SAa,AByn, z, t)

}
,

G(SAa, Tyn, z, kt) ≤ max

{
G(ABAa, PQyn, z, t), G(ABAa, SAa, z, t),

G(Tyn, PQyn, z, t), G(SAa,AByn, z, t)

}
.

As A,B and S commutes SAa = ASa = Aa and ABAa = ASa = Aa.

F (Aa, PQyn, z, kt) ≥ min

{
F (Aa, PQyn, z, t), F (Aa,Aa, z, t),

F (Tyn, PQyn, z, t), F (Aa,AByn, z, t)

}
,

F (Aa, a, z, kt) ≥ min

{
F (Aa, a, z, t), F (Aa,Aa, z, t),

F (a, a, z, t), F (Aa, a, z, t)

}
,

F (Aa, a, z, kt) ≥ F (Aa, a, z, t),

G(Aa, PQyn, z, kt) ≤ max

{
G(Aa, PQyn, z, t), G(Aa,Aa, z, t),

G(Tyn, PQyn, z, t), G(Aa,AByn, z, t)

}
,

G(Aa, a, z, kt) ≤ max

{
G(Aa, a, z, t), G(Aa,Aa, z, t),

G(a, a, z, t), G(Aa, a, z, t)

}
,

G(Aa, a, z, kt) ≤ G(Aa, a, z, t).

Therefore, Aa = a. Hence we have Aa = Ba = Sa = a. Similarly to show that

Qa = a, we substitute x = xn and y = Qa and to show that Pa = a, put x = xn

and y = Pa. Hence we obtain Pa = Aa = Ba = Ta = Qa = Sa = a. □

Example 3.3. Let self-mappings of X be P, Q, A, B, T and S and let X = [0, 1],

where Ax = x
3
, Bx = x

2
, Sx = x

6
, Tx = x

6
, Qx = 2x and Px = x

12
. Let {xn} and {yn}

be 2 sequences, where xn = n
n+1

, yn = n2

n2+1
. Then 1

6
is the fixed point of P,Q,A,B, T

and S.
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