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Analysis of a class of frictional contact problem

for elastic-viscoplastic piezoelectric thermal

materials

Ahmed Hamidat

Abstract. We consider a quasistatic frictional contact problem with a subdiffer-

ential boundary condition for general thermo-electro-elastic-viscoplastic materials.

The frictional contact is modeled by a general velocity-dependent dissipation func-

tion. We derive a weak formulation of the system and then prove the existence of

a unique weak solution to the problem. The proof is based on arguments of evo-

lutionary variational inequalities, parabolic equations, the variational equation,

differential equations, and the fixed-point theorem. Finally, we describe a number

of concrete contact and friction conditions to which our results apply.

1. Introduction

Due to the importance of contact processes in structural and mechanical sys-

tems, significant progress has recently been achieved in modeling and mathemati-

cally analysing various processes involved in the contact between deformable bodies.

Constitutive laws with internal variables have been employed in numerous publica-

tions to model the effect of internal variables on the behavior of real materials such as

metals, rocks, polymers, and others, where the rate of deformation depends on these

internal variables. Some of the internal state variables considered by many authors

include the spatial distribution of dislocations, material work-hardening, absolute

temperature, and damage fields. For examples, please refer to [1, 14, 16, 19, 18]

for cases involving hardening, temperature, and other internal state variables.

2020 Mathematics Subject Classification. Primary: 74C10; Secondary: 49J40.
Key words and phrases. thermo-electro-elastic-viscoplastic, quasistatic, subdifferential bound-

ary condition, Evolutionary variational inequalities, differential equations, fixed point

This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this

license, visit http://creativecommons.org/licenses/by/4.0/.

11



12 HAMIDAT

Various models have been developed to describe the interaction between electric

and mechanical fields (see, e.g., [2, 6, 7, 11]). Therefore, there is a need to extend

the results on models for contact with deformable bodies that include coupling

between mechanical and electrical properties. General models for elastic materials

with piezoelectric effects can be found in [5, 6, 15], while viscoelastic piezoelectric

materials are discussed in [11, 9], and elasto-viscoplastic piezoelectric materials have

been studied in [10, 8].

In this paper, we investigate the mathematical model for the quasistatic process

of frictional contact with a subdifferential boundary condition for general thermo-

electro-elastic-viscoplastic materials. To do this, we consider a rate-type constitutive

equation with two internal variables of the form

σ(t) =Aε(u̇(t)) + B(εu(t)) + E∗∇φ(t)

+

∫ t

0

G (σ(s)−Aε(u̇(s)− E∗∇φ(s)), ε (u(s)) , θ(s),k(s)) ds,
(1)

In this context, u denotes the displacement field, σ represents the stress tensor,

and the dot above denotes the derivative with respect to the time variable. ε(u)

is the linearized strain tensor, θ represents the absolute temperature, and k is an

internal state variable. Here, A is the viscosity operator, allowed to be nonlinear, B
is the elasticity operator, and G is a nonlinear constitutive function that describes the

visco-plastic behavior of the material. φ is the electric potential, and E represents

the third-order piezoelectric tensor, with E∗is its transposed. It follows from (1)

that at each time moment, the stress tensor σ(t) is split into three parts σ(t) =

σV(t)+σE(t)+σR(t) , where σV (t) = A(ε(u̇(t))) represents the purely viscous part

of the stress, σE(t) = E∗∇φ(t) represents the electric part of the stress, whereas

σR(t) satisfies a rate-type elastic-viscoplastic relation with absolute temperature

and internal state variable

σR(t) = B(ε(u(t))) +
∫ t

0

G
(
σR(s), ε(u(s)), θ(s),k(s)

)
ds. (2)

When G = 0 in (1), it reduces to the electro-viscoelastic constitutive law given

by

σ(t) = Aε(u̇(t)) + Bε(u(t)) + E∗∇φ(t).
The evolution of the state internal variable field is given by the following differ-

ential equation

k̇ = Φ(σ −Aε(u̇)− E∗∇φ, ε(u), θ,k) , (3)

Here, Φ is a nonlinear function that also depends on the internal state variable

k. The following constitutive law is employed for the electric potential

D = Eε(u) +B∇(φ), (4)

where D is the electric displacement field and B is the electric permittivity tensor.
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The differential inclusion used for the evolution of the temperature field is

θ̇ − k0∆θ = ψ(σ −Aε(u̇), ε(u), θ,k) + ρ, (5)

where ψ is a nonlinear constitutive function which represents the heat generated by

the work of internal forces and ρ is a given volume heat source.

Finally, we model the frictional contact with a subdifferential boundary condition

of the form

u ∈ U, h(v)− h(u̇) ≥ −σν(v − u̇), ∀v ∈ U, (6)

In this expression, U represents the set of contact admissible test functions, σν

denotes the Cauchy stress vector on the contact boundary, and h is a given convex

function. The inequality in (6) holds almost everywhere on the contact surface.

Examples and detailed explanations of inequality problems in contact mechanics

that lead to boundary conditions of this form can be found in the monographs

[17, 20]. In this condition we can be to the choice of particular forms of the function

h, which can be written as the sum of two contact functions, corresponding to the

normal and tangential components of the Cauchy stress vector.

The rest of the paper is organized as follows. In Section 2 we present the me-

chanical problem, some notation, list the assumptions on the problem’s data, and we

derive the variational formulation of the model. We prove in section 3 the existence

and uniqueness of the solution, where it is carried out in several steps and is based

on a classical existence and uniqueness result on parabolic inequalities, evolutionary

variational equalities, differential equations and fixed point arguments. In Section

4 we describe a number of concrete thermal frictional conditions which may be cast

in the abstract form (6) and to which our main results apply.

2. Statement of the Problem

In this section, we present some essential tools for our main results. Let Ω ⊂
Rd(d = 2, 3) be a bounded domain with a Lipschitz boundary Γ, partitioned into

three disjoint measurable parts Γ1,Γ2 and Γ3, on one hand, and on two measurable

parts Γa and Γb on the other hand, such that measΓ1 > 0,measΓa > 0. We denote

by Sd the space of symmetric tensors on Rd. We define the inner product and the

Euclidean norm on Rd and Sd, respectively, by

u · v = uivi, ∀u,v ∈ Rd and σ · τ = σijτij ∀σ, τ ∈ Sd,
∥u∥ = (u · u) 1

2 , ∀u ∈ Rd and ∥σ∥ = (σ · σ) 1
2 , ∀σ ∈ Sd.

Here and below, the indices i and j run from 1 to d and the summation convention

over repeated indices is used and the index that follows a comma indicates a partial

derivative with respect to the corresponding component of the independent variable.
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Let Ω ⊂ Rd be a bounded domain with a regular boundary Γ and let ν denote

the unit outer normal on Γ. We define the function spaces

H = L2(Ω)d = {u = (ui) | ui ∈ L2(Ω)} , H1 = {u = (ui) | ε(u) ∈ H} = H1(Ω),

H = {σ = (σij) | σij = σji ∈ L2(Ω)} , H1 = {σ ∈ H | Divσ ∈ H}.

Here ε : H1 → H and Div : H → H are the deformation and the divergence

operators, respectively, defined by

ε(u) = (εij(u)) , ε(u) =
1

2
(ui,j + uj,i) , Div(σ) = σij,j.

H, H1, H and H1 are real Hilbert spaces endowed with the canonical inner products

given by

(u,v)H =

∫
Ω

uividx ∀u,v ∈ H, (σ, τ )H =

∫
Ω

σijτijdx ∀σ, τ ∈ H,

(u,v)H1 = (u,v)H + (ε(u), ε(v))H, ∀u,v ∈ H1,

(σ, τ )H1 = (σ, τ )H + (Divσ,Div τ )H , σ, τ ∈ H1.

The associated norms on the spaces H, H1, H and H1, are denoted by ∥.∥H ,
∥.∥H1 , ∥.∥H and ∥.∥H1 , respectively. Let HΓ = H

1
2 (Γ)d and γ : H1 → HΓ be the

trace map. For every element u ∈ H1, we also write u for the trace γu of u on Γ

and we denote by uν and uτ the normal and tangential components of u on Γ given

by

uν = u.ν, uτ = u− uνν. (7)

Similarly, normal and tangential components of the stress field σ are denoted by

σν = σν · ν, στ = σν − σνν. (8)

and for all σ ∈ H1 the following Green’s formula holds

(σ, ε(v))H + (Divσ,v)H =

∫
Γ

σν.vda ∀v ∈ H1. (9)

We suppose that U ⊂ H1, U +D(Ω)d ⊂ U , and let V denote the closed subspace

of H1 defined by

V = {v ∈ H1(Ω) | v = 0 on Γ1} ∩ U,
The set of admissible internal state variables is given by

Y =
{
ϖ = (ϖi) | ϖi ∈ L2(Ω), 1 ≤ i ≤ m

}
.

Let V denote the closed subspace of L2(Ω) given by

V =
{
ζ ∈ L2(Ω) | εij(ζ) ∈ L2(Ω)

}
= H1(Ω),



A FRICTIONAL CONTACT PROBLEM 15

Since meas(Γ)1 > 0, Korn’s inequality holds and thus, there exists a positive

constant Ck depending only on Ω and Γ1 such that

∥ε(v)∥H ≥ Ck∥v∥H1(Ω)d , ∀v ∈ V.

On V , we consider the inner product and the associated norm given by

(u,v)V = (ε(v), ε(v))H, ∥v∥V = ∥ε(v)∥H, ∀u,v ∈ V , (10)

From Korn’s inequality, it follows that ∥.∥H1(Ω)d and ∥.∥V are equivalent norms

on V and therefore (V , (, )V) is a real Hilbert space. Moreover, by the Sobolev trace

theorem, there exists a constant C̃0, depending only on Ω, Γ1 and Γ3, such that

∥v∥L2(Γ3)
d ≤ C̃0∥v∥V , ∀v ∈ V . (11)

Moreover, we denote by V ′ the dual of the space V . Identifying L2(Ω), with its

own dual, we have the inclusions

V ⊂ L2(Ω) ⊂ V ′.

We use the notation (., .)V×V ′ to represent the duality pairing between V, V ′

For the electric displacement field we use the Hilbert space

W =
{
D ∈ H | divD ∈ L2(Ω)

}
,

endowed with the inner product

(D,E)W = (D,E)H + (divD, divE)L2(Ω),

and the associated norm ∥.∥W , The electric potential field is to be found in

W =
{
ξ ∈ H1(Ω), ξ = 0 on Γa

}
.

Since meas (Γa) > 0, the Poincaré-Friedrichs inequality holds

∥∇ζ∥H ≥ cF∥ζ∥H1(Ω), ∀ζ ∈ W, (12)

where cF > 0 is a constant which depends only on Ω and Γa. On W we use the

inner product

(φ, ξ)W = (∇φ,∇ξ)H , (13)

and ∥.∥W the associated norm. It follows from (12) that ∥.∥H1(Ω) and ∥.∥W are

equivalent norms on W and therefore (W, ∥.∥W ) is a real Hilbert space.

For any real Hilbert space X, we use the classical notation for the spaces

Lp(0, T ;X) andW k,p(0, T ;X), where 1 ≤ p ≤ ∞ and k > 1. For T > 0 we denote by

C(0, T ;X) and C1(0, T ;X) the space of continuous and continuously differentiable

functions from [0, T ] to X, respectively, with the norms

∥f∥C(0,T ;X) = max
t∈[0,T ]

∥f(t)∥X .

∥f∥C1(0,T ;X) = max
t∈[0,T ]

∥f(t)∥X + max
t∈[0,T ]

∥ḟ(t)∥X .
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The physical setting is the following. Let us consider electro- thermo-elastic-

viscoplastic bodie occupies a bounded domain Ω ⊂ Rd(d = 2, 3) with a smooth

boundary Γ, Let T > 0 and let [0, T ] be the time interval of interest. The body is

clamped on Γ1× (0, T ), so the displacement field vanishes there, surface tractions of

density f0 act on Γ2×(0, T ) and a volume force of density f2 is applied in Ω×(0, T ).

We also assume that the electrical potential vanishes on Γa × (0, T ) and a surface

electrical charge of density q2 is prescribed on Γb × (0, T ). We admit a possible

external heat source applied in Ω × (0, T ), given by the function ρ. The contact is

frictional, the process is quasi-static and use (6) as boundary contact condition.

The classical formulation of the mechanical problem of electro-thermo-elastic-

viscoplastic material with internal state variable, frictional, contact may be stated

as follows.

Problem P . Find a displacement field u : Ω × (0, T ) → Rd, a stress field

σ : Ω × (0, T ) → Sd, an electric potential field φ : Ω × (0, T ) → R, a temperature

field θ : Ω× (0, T ) → R, an internal state variable field k : Ω× (0, T ) → Rm, and a

electric displacement field D : (0, T ) → Rd such that such that

σ(t) = Aε(u̇(t)) + B(εu(t)) + E∗∇φ(t)

+

∫ t

0

G (σ(s)−Aε(u̇(s)− E∗∇φ(s)), ε (u(s)) , θ(s),k(s)) ds

in Ω× (0, T ),

(14)

D = Eε(u) +B∇(φ) in Ω× (0, T ), (15)

k̇ = Φ(σ −Aε(u̇)− E∗∇φ, ε(u), θ,k) in Ω× (0, T ), (16)

θ̇ − k0∆θ = ψ(σ −Aε(u̇), ε(u), θ,k) + ρ in Ω× (0, T ), (17)

Divσ + f0 = 0 in Ω× (0, T ), (18)

divD − q0 = 0 in Ω× (0, T ), (19)

u = 0 on Γ1 × (0, T ), (20)

σν = f2 on Γ2 × (0, T ), (21)

u ∈ U, h(v)− h(u̇) ≥ −σν(v − u̇), ∀v ∈ U on Γ3 × (0, T ), (22)

φ = 0 on Γa × (0, T ), (23)

D.ν = q2 on Γb × (0, T ), (24)

k0
∂θ

∂ν
+ δθ = 0 on Γ× (0, T ), (25)

u(0) = u0, k(0) = k0, θ(0) = θ0 in Ω. (26)

First, equations (14)-(16) represent the thermo-electro elastic-viscoplastic con-

stitutive law with internal state variable, were A is the viscosity operator, allowed to

be nonlinear, B is the elasticity operator and G is a nonlinear constitutive function
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describing the viscoplastic behavior of the material and depending on the internal

state variable k, E(φ) = −∇φ is the electric field, E = (eijk) represent the third or-

der piesoelectric tensor, E∗ is its transposition. Equation (17) represents the energy

conservation. Equations (18) and (19) represent the equilibrium equations for the

stress and electric displacement fields. Equations (20)-(21) are the displacement-

traction conditions. Condition (22) represents a subdifferential boundary condition

on Γ3 and h : Γ3 × Rd → R is a measurable convex function.

(23) and (24) represent the electric boundary conditions. The relation (25)

represents a Fourier boundary condition for the temperature on Γ2. Finally, (26) is

the initial condition.

In the study of the problem P , we consider the following assumptions

The viscosity operator A : Ω× Sd −→ Sd satisfies



(a)There exists LA > 0 such that

∥A(x, ε1)−A(x, ε2)∥ ≤ LA∥ε1 − ε2∥
for all ε1, ε2 ∈ Sd, a.e x ∈ Ω.

(b)There exists mA > 0 such that

(A(x, ε1)−A(x, ε2)).(ε1 − ε2) ≥ mA∥ε1 − ε2∥2

for all ε1, ε2 ∈ Sd, a.e x ∈ Ω.

(c) The mapping x 7→ A(x, ε) is Lebesgue measurable on Ω,

for any ε ∈ Sd.
(d) The mapping x 7→ A(x,0) ∈ H.

(27)

The elasticity operator B : Ω× Sd −→ Sd satisfies



(a) There exists LB > 0 such that

∥B(x, ε1)− B(x, ε2)∥ ≤ LB∥ε1 − ε2∥, for all ε1, ε2 ∈ Sd, a.e x ∈ Ω.

(b)The mapping x 7→ B(x, ε) is Lebesgue measurable on Ω,

for any ε ∈ Sd.
(c) The mapping x 7→ B(x,0) ∈ H.

(28)
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The visco-plasticity operator G : Ω× Sd × Sd × Rm −→ Rm satisfies

(a) There exists a constant LG > 0 such that

∥G (x,σ1, ε1,k1)− G (x,σ2, ε2,k2)∥ ≤
LG (∥σ1 − σ2∥+ ∥ε1 − ε2∥+ ∥k1 − k2∥) ,
for all ε1, ε2,σ1,σ2 ∈ Sd, and k1,k2 ∈ Rm, a.e x ∈ Ω.

(b) For any σ, ε ∈ Sd, and k ∈ Rm,x 7→ G(x,σ, ε,k) is Lebesgue

measurable on Ω.

(c) The mapping x 7→ G(x,0,0,0) ∈ H.

(29)

The function ψ : Ω× Sd × Sd × Rm −→ Rm satisfies

(a) There exists a constant Lψ > 0 such that

∥ψ (x,σ1, ε1,k1)− ψ (x,σ2, ε2,k2)∥ ≤
Lψ (∥σ1 − σ2∥+ ∥ε1 − ε2∥+ ∥k1 − k2∥) ,
for all ε1, ε2,σ1,σ2 ∈ Sd, and k1,k2 ∈ Rm, a.e x ∈ Ω.

(b) For any σ, ε ∈ Sd, and k ∈ Rm,x 7→ ψ(x,σ, ε,k) is Lebesgue

measurable on Ω.

(c) The mapping x 7→ ψ(x,0,0,0) ∈ L2(Ω)m.

(30)

The function Φ : Ω× Sd × Sd × Rm −→ Rm satisfies

(a) There exists a constant LΦ > 0 such that

∥Φ (x,σ1, ε1,k1)− Φ (x,σ2, ε2,k2)∥ ≤
LΦ (∥σ1 − σ2∥+ ∥ε1 − ε2∥+ ∥k1 − k2∥) ,
for all ε1, ε2,σ1,σ2 ∈ Sd, and k1,k2 ∈ Rm, a.e x ∈ Ω.

(b) For any σ, ε ∈ Sd, and k ∈ Rm,x 7→ Φ(x,σ, ε,k) is Lebesgue

measurable on Ω.

(c) The mapping x 7→ Φ(x,0,0,0) ∈ L2(Ω)m.

(31)

Electric permittivity operator B = (bij) : Ω× Rd → Rd satisfies
(a) B(x, E) = (bij(x)Ej) for all E = (Ei) ∈ Rd, a.e. x ∈ Ω.

(b) bij = bji ∈ L∞(Ω), 1 ≤ i, j ≤ d.

(c) There exists a constant mB > 0 such that

B(E.E) ≥ mB∥E∥2,∀E = (Ei) ∈ Rd, a.e. in Ω.

(32)
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The piezoelectric operator E : Ω× Sd → Rd satisfies{
(a) E = (eijk) , eijk ∈ L∞(Ω), 1 ≤ i, j, k ≤ d.

(b) E(x)σ · τ = σ · E∗τ ∀σ ∈ Sd and all τ ∈ Rd.
(33)

The piezoelectric tensor E = (eijk) : Ω× Sd → R

eijk = eikj ∈ L∞(Ω).

The forces, tractions and the volume heat source have the regularity

f 0 ∈ C(0, T ;H), f 2 ∈ C
(
0, T ;L2 (Γ2)

d
)
. (34)

q0 ∈ C
(
0, T ;L2(Ω)

)
, q2 ∈ C

(
0, T ;L2 (Γb)

)
, ρ ∈ C(0, T ;L2(Ω)). (35)

The energy coefficient k0 and the functions δ satisfy

k0 > 0, δ > 0. (36)

The initial data satisfy

u0 ∈ V , θ0 ∈ V, k0 ∈ Y. (37)

We introduce the following bilinear form a : V × V → R

a(ζ, φ) = k0

∫
Ω

∇ζ.∇ξdx+
∫
Γ

ζ.ξdγ. (38)

Next we define the functional j : V → (−∞,+∞] by

j(v) =


∫
Γ3

h(v)da if h(v) ∈ L1 (Γ3) ,

+∞ otherwise .
(39)

and we suppose that

j is a convex lower semicontinuous function on V such that j ̸≡ +∞. (40)

Next, we use the Riesz representation theorem to define f : [0, T ] → V

(f(t),v)V =

∫
Ω

f0(t) · vdx+
∫
Γ2

f2(t) · vda, (41)

for all v ∈ V , t ∈ [0, T ]. Then conditions (34) and (41) imply

f(t) ∈ C(0, T ;V). (42)

and we denote by q : [0, T ] → W the function defined by

(q(t), ζ)W =

∫
Ω

q0(t)ζdx−
∫
Γb

q2(t)ζda. (43)

By a standard procedure based on Green’s formula we can derive the following

variational formulation of the contact problem (14)-(26).
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Problem PV . Find a displacement field u : (0, T ) → V , a stress field σ :

(0, T ) → H, an electric potential φ : (0, T ) → W, a temperature field θ : (0, T ) → V,

and an internal state variable field k : (0, T ) → Y, and a electric displacement field

D : (0, T ) → W1 such that

σ(t) =Aε(u̇(t)) + B(εu(t)) + E∗∇φ(t)

+

∫ t

0

G (σ(s)−Aε(u̇(s)− E∗∇φ(t)), ε (u(s), θ(s),k(s))) ds,
(44)

k̇(t) = Φ (σ(t)−Aε(u̇(t))− E∗∇φ(t), ε(u(t)), θ(t),k(t)) (45)

D = Eε(u)−B∇(φ), (46)

(σ(t), ε(v)− ε(u̇(t)))H + j(v)− j(u̇(t))

≥ (f(t),v − u̇(t))V , ∀v ∈ V , a.e.t ∈ (0, T ).
(47)

(Eε (u(t)) +B (E (φ(t))) ,∇ϕ)H = (−q(t), ϕ)W ,∀ϕ ∈ W. (48)

(θ̇(t),v)V ′×V + a0(θ(t),v) = (ψ(σ(t), ε(u̇(t)), θ(t)),v)V ′×V
+(ρ(t),v)L2(Ω), ∀v ∈ V, a.e. t ∈ (0, T ).

(49)

u(0) = u0, θ(0) = θ0, k(0) = k0. (50)

Our main existence and uniqueness result for Problem PV is in the following

section.

3. Main Results

Theorem 3.1. Assume that (27)-(40) hold, Then there exists a unique solution

(u,σ, φ, θ,k,D) to problem PV . Moreover, the solution has the regularity

u(t) ∈ C1(0, T ;V), (51)

φ ∈ C(0, T ;W ), (52)

σ ∈ C(0, T ;H), (53)

θ ∈ W 1,2(0, T ;L2(Ω)) ∩ L2(0, T ;V ). (54)

k ∈ C1 (0, T ;Y ) . (55)

D ∈ C(0, T ;W). (56)

The functions u, σ, φ, θ, k, and D which satisfy (44)-(50)are called a weak

solution of the contact problem P . We conclude that, under the assumptions (27)-

(40), the mechanical problem (14)-(26) has a unique weak solution satisfying (51)-

(56).

The proof of Theorem 3.1, is carried out is several steps and is based on a classical

existence and uniqueness result on evolutionary variational inequalities, differentiel

equations and fixed point argument.
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We denote by C a constant whose value may change from line to line when no

confusing can arise.

Let (η1,η2) ∈ C(0, T ;H×Y ) be given, in the first step, we consider the following

variational problem.

Problem P1
η . Find a displacement field uη : (0, T ) → V , such that

(Aε(u̇η(t)), ε(v − u̇η(t)))H + (Bε(uη(t)), ε(v − u̇η(t)))H +
(
η1(t),v − u̇η(t)

)
H

+j (v)− j (u̇η(t)) ≥ (f(t),v − u̇η(t))V ,∀v ∈ V , a.e. t ∈ (0, T ),

(57)

uη(0) = u0. (58)

We have the following result for P1
η

Lemma 3.2. There exists a unique solution to Problem P1
η with the regularity

(51).

Proof. Let us introduce operators A : V → V and B : V → V

(Au,v)V = (Aε(u), ε(v))H, ∀u,v ∈ V . (59)

(Bu,v)V = (Aε(u), ε(v))H, ∀u,v ∈ V . (60)

Therefore, (57) can be rewritten as follows

(Au̇(t),v − u̇(t))V + (Bu(t),v − u̇(t))V + j(v)− j(u̇(t)) ≥ (fη(t),v − u̇(t))V ,

(61)

where

fη(t) = f(t)− η1(t), a.e.t ∈ [0, T ].

It follows from (10), (59), (60) and hypothesis (27), (28) that there exist three

positive constants mA = mA, LA = LA and LB = LB, such that

(Au− Av,u− v)V ≥ mA∥u− v∥2V
∥Au− Av∥V ≤ LA∥u− v∥V
∥Bu−Bv∥V ≤ LB∥u− v∥V .

Moreover, by using (37), (40), (42) and classical arguments of functional analysis

concerning Evolutionary variational inequalities [3, 21] we can easily prove the

existence and uniqueness of uη satisfying (51). □

In the second step we use the displacement field obtained in Lemma 3.2, to

construct the following variational problem for the an electrical potential.
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Problem P2
η . Find an electrical potential φη : (0, T ) → W such that

(Eε (uη(t)) +B (E (φ(t)η)) ,∇ϕ)H = (−q(t), ϕ)W ,∀ϕ ∈ W. (62)

We have the following result for problem P2
η

Lemma 3.3. Problem (62) has unique solution φη which satisfies the regularity

(52).

Moreover, if φη represents the solution to Problem P2
η for ηi, i = 1, 2, then there

exists C > 0 such that

∥φ1(t)− φ2(t)∥W ≤ C ∥u1(t)− u2(t)∥V , ∀t ∈ (0, T ). (63)

Proof. we consider the form G : W ×W → R

G(φ, ϕ) = (B∇φ,∇ϕ)H ∀φ, ϕ ∈ W, (64)

we use (12), (13), (32) and (64) to show that the form G is bilinear continuous,

symmetric and coercive on W , moreover using (43) and the Riesz representation

theorem we may define an element ξη : [0, T ] → W such that

(ξη(t), ϕ)W = (q(t), ϕ)W + (Eε (uη(t)) ,∇ϕ)H ∀ϕ ∈ W, t ∈ (0, T ),

we apply the Lax-Milgram Theorem to deduce that there exists a unique element

φη(t) ∈ W such that

G (φη(t), ϕ) = (ξη(t), ϕ)W , ∀ϕ ∈ W. (65)

It follows from (65) that φη is a solution of the equation (62). Let φηi = φi, and

uηi = ui for i = 1, 2. We use (62) to obtain

∥φ1(t)− φ2(t)∥W ≤ C ∥u1(t)− u2(t)∥V , ∀t ∈ (0, T ).

Now since uη ∈ C1(0, T ;V), it implies that φη ∈ C(0, T ;W ).This completes the

proof. □

For λ ∈ C(0, T ;V ′), we consider the following variational problem.

Problem Pλ. Find the temperature field θλ : (0, T ) → R,(
θ̇λ(t),v

)
V ′×V

+ a0 (θλ(t),v) = (λ(t) + ρ(t),v)V ′×V ∀v ∈ V, a.e. t ∈ (0, T ),

(66)

θλ(0) = θ0, in Ω. (67)

Lemma 3.4. There exists a unique solution θλ to the auxiliary problem Pλ sat-

isfying (55).
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Proof. By an application of the Poincaré-Friedrichs inequality, we can find a

constant δ′ > 0 such that∫
Ω

∥∇ζ∥2dx+ δ

k0

∫
Γ

∥ζ∥2dγ ≥ δ′
∫
Ω

∥ζ∥2dx, ∀ζ ∈ V.

Thus, we obtain

a0(ζ, ζ) ≥ c1∥ξ∥2V , ∀ζ ∈ V,

where c1 = k0min(1, δ
′)/2, which implies that a0 is V-elliptic. Consequently, based

on classical arguments of functional analysis concerning parabolic equations, the

variational equation (66) has a unique solution θλ satisfying (54). □

Now, define kη ∈ C1(0, T ;Y ) by

kη(t) = k0 +

∫ t

0

η2(s)ds. (68)

In the fourth step we use the displacement field uη obtained in Lemma 3.2 and

kη defined in (68) to consider the following Cauchy problem for the stress field.

Problem Pη,λ. Find the stress field ση,λ : (0, T ) → Sn which is a solution of the

problem

ση,λ(t) = B (ε (uη(t))) +

∫ t

0

G (ση,λ(s), ε (uη(s), θλ(s),kη(s))) ds, ∀t ∈ [0, T ].

(69)

Lemma 3.5. There exists a unique solution of Problem Pη,λ and it satisfies

(53). Moreover, if uηi , θηi and σηi,λi represent the solutions of problems P1
η ,P2

η ,Pλ
and Pη,λ , respectively, for i = 1, 2 , then there exists C > 0 such that

∥ση1,λ1(t)− ση2,λ2(t)∥
2
H ≤ C

(
∥uη1(t)− uη2(t)∥

2
V

+

∫ t

0

∥uη1(s)− uη2(s)∥
2
V + ∥θλ1(t)− θλ2(t)∥

2
V + ∥kη1(t)− kη2(t)∥

2
Y ds

)
.

(70)

Proof. Let Tη,λ : C (0, T ;H) → C (0, T ;H) be the operator given by

Tη,λσ(t) =B (ε (uη(t))) +

∫ t

0

G (σ(s), ε (uη(s), θλ(s),kη(s))) ds, ∀t ∈ [0, T ].

(71)

For σ1,σ2 ∈ L2(0, T ;H), we use (29) and (71) to obtain for all t ∈ [0, T ]

∥Tη,λσ1 (t1)− Tη,λσ2 (t1)∥2H ≤ L2
GT

∫ t1

0

∥σ1(s)− σ2(s)∥2H ds.

Integration on the time interval (0, t2) ⊂ (0, T ), it follows that∫ t2

0

∥Tη,λσ1 (t1)− Tη,λσ2 (t1)∥2H dt1 ≤ L2
GT

∫ t2

0

∫ t1

0

∥σ1(s)− σ2(s)∥2H dsdt1.
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Therefore,

∥Tη,λσ1 (t2)− Tη,λσ2 (t2)∥2H ≤ L4
GT

2

∫ t2

0

∫ t1

0

∥σ1(s)− σ2(s)∥2H dsdt1.

For t1, t2, ..., tp ∈ (0, T ), we generalize the procedure above by recurrence on p.

We obtain the inequality

∥Tη,λσ1 (tp)− Tη,λσ2 (tp)∥2H

≤ L2p
G T

p

∫ tp

0

· · ·
∫ t2

0

∫ t1

0

∥σ1(s)− σ2(s)∥2H dsdt1 . . . dtp−1.

Which implies

∥Tη,λσ1 (tp)− Tη,λσ2 (tp)∥2H ≤
L2p
G T

p+1

p!

∫ T

0

∥σ1(s)− σ2(s)∥2H ds.

Thus, we can infer, by integrating over the interval time (0, T ), that

∥Tη,λσ1 − Tη,λσ2∥2C(0,T ;H) ≤
L2p
G T

p+2

p!
∥σ1 − σ2∥2C(0,T ;H) .

It follows from this inequality that for large p enough, the operator T (p)
η,λ is a

contraction on the Banach space C (0, T ;H), and therefore there exists a unique

element ση,λ ∈ C (0, T ;H) such that T (p)
η,λ ση,λ = ση,λ. Moreover, ση,λ is the unique

solution of Problem Pη,λ, and using (69), the regularity of uη, the regularity of

θλ, and the properties of the operators B, G, it follows that ση,λ ∈ C(0, T ;H).

Consider now η1,η2 ∈ C(0;T,H × Y ), λ1, λ2 ∈ C(0;T, V ′) and for i = 1, 2 denote

uηi
= ui,σηi,λi

= σi,kηi
= ki and θλi = θi. We have

σi(t) = B(ε (ui(t)) +
∫ t

0

G (σi(s), ε (ui(s)) , θi(s),ki) ds, a.e. t ∈ (0, T ),

and using the properties (28), (29) of B, G we find

∥σ1(t)− σ2(t)∥2H
≤ C

(
∥u1(t)− u2(t)∥2V +

∫ t

0

∥σ1(s)− σ2(s)∥2H ds+
∫ t

0

∥u1(s)− u2(s)∥2V ds

+

∫ t

0

∥θ1(s)− θ2(s)∥2L2(Ω) ds+

∫ t

0

∥k1(s)− k2(s)∥2Y ds
)
, ∀t ∈ [0, T ].

(72)

We use Gronwall argument in the previous inequality to deduce (70), which

concludes the proof of Lemma 3.5. □

Finally, as a consequence of these results and using the properties of the operator

G the operator E , the function S for t ∈ (0, T ), we consider the element

Λ(η, λ)(t) =
(
Λ1(η, λ)(t),Λ2(η, λ)(t),Λ3(η, λ)(t)

)
∈ H × Y × V ′, (73)
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defined by

(Λ1(η, λ)(t),v)H×V = (E∗∇φη(t), ε(v))H
+

(∫ t

0

G (ση,λ(s), ε (uη(s)) , θλ(s),kη(s)) ds, ε(v)

)
H
,∀v ∈ V , (74)

Λ2 (η, λ) (t) = Φ (ση,λ, ε (uη(t)) , αλ(t), θλ(t),kη(t)) . (75)

Λ3 (η, λ) (t) = ψ (ση,λ, ε (uη(t)) , αλ(t), θλ(t),kη(t)) . (76)

Here, for every (η, λ) ∈ C(0, T ;H × Y × V ′),uη, φη, θλ and kη represent the

displacement field, the electric potential field, the adhesion field and the stress field

obtained in Lemmas 3.2, 3.3, 3.4, respectively, and kη is the internal state variable

given by (68). We have the following result.

Lemma 3.6. The mapping Λ has a fixed point (η∗, λ∗) ∈ C(0, T ;H× Y × V ′),

such that Λ (η∗, λ∗) = (η∗, λ∗) .

Proof. Let t ∈ (0, T ) and (η1, λ1) , (η2, λ2) ∈ C (0, T ;H× Y × V ′). We use the

notation that uηi = ui, u̇ηi = u̇i, θλi = θi, φηi = φi, kηi
= ki and σηi,λi = σi for

i = 1, 2. Using (10)),(30),(31), and (33) to find

∥Λ (η1, λ1) (t)− Λ (η2, λ2) (t)∥2H×Y×V ′

≤C(∥φ1(t)− φ2(t)∥2W +

∫ t

0

(∥σ1(s)− σ2(s)∥2H + ∥u1(s)− u2(s)∥2V

+ ∥θ1(s)− θ2(s)∥2L2(Ω) + ∥k1(s)− k2(s)∥2Y ds)

+ ∥σ1(s)− σ2(s)∥2H + ∥u1(s)− u2(s)∥2V + ∥θ1(s)− θ2(s)∥2L2(Ω)

+ ∥k1(s)− k2(s)∥2Y ),

(77)

we use estimates (63), (70) to obtain

∥Λ (η1, λ1) (t)− Λ (η2, λ2) (t)∥2H×Y×V ′

≤C(∥u1(s)− u2(s)∥2V + ∥θ1(s)− θ2(s)∥2L2(Ω) + ∥k1(s)− k2(s)∥2Y

+

∫ t

0

∥u1(s)− u2(s)∥2V + ∥θ1(s)− θ2(s)∥2L2(Ω) + ∥k1(s)− k2(s)∥2Y ds.

(78)

Using (57), we derive the relation

(Aε(u̇1)−Aε(u̇2), ε(u̇1)− ε(u̇2)H + (Bε(u1)− Bε(u2), ε(u̇1)− ε(u̇2)H

≤ (η1
1 − η1

2, ε(u̇1)− ε(u̇2))H,
(79)

then we use assumptions (27) and (28) to derive

∥u̇1 − u̇2∥V ≤ C
(
∥u1 − u2∥V +

∥∥η1
1 − η1

2

∥∥
H

)
. (80)
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Since ui (t) =

t∫
0

u̇i (s) ds+ u0,∀t ∈ (0, T ), we have

∥u1(t)− u2(t)∥2V ≤
∫ T

0

∥u̇1(s)− u̇2(s)∥2V ds. (81)

Combining (80) and (81), and using the Gronwall’s inequality, we have

∥u1(t)− u2(t)∥V ≤ C

∫ t

0

∥∥η1
1 − η1

2

∥∥
H ds, t ∈ (0, T ). (82)

On the other hand, if we take the substitution λ = λ1, λ = λ2 in (66) and

subtracting the two obtained equations, we deduce by choosing v = θλ1 − θλ2 as test

function

∥θ1(t)− θ2(t)∥2L2(Ω) + C1

∫ t

0

∥θ1(t)− θ2(t)∥2V

≤
∫ t

0

∥λ1(s)− λ2(s)∥V ′ ∥θ1(s)− θ2(s)∥V ds, ∀t ∈ (0, T ),

employing Hölder’s and Young’s inequalities, we deduce that

∥θ1(t)− θ2(t)∥2L2(Ω) +

∫ t

0

∥θ1(s)− θ2(s)∥2V ds

≤ C

∫ t

0

∥λ1(s)− λ2(s)∥2V ′ ds, ∀t ∈ (0, T ),

we use the inclusion L2(Ω) ⊂ V , we get

∥θ1(t)− θ2(t)∥2L2(Ω) +

∫ t

0

∥θ1(s)− θ2(s)∥2L2(Ω) ds

≤ C

∫ t

0

∥λ1(s)− λ2(s)∥2V ′ ds, ∀t ∈ (0, T ),

from this inequality, combined with Gronwall’s inequality, we deduce that

∥θ1(t)− θ2(t)∥2L2(Ω) ≤ C

∫ t

0

∥λ1(s)− λ2(s)∥2V ′ ds. (83)

Furthermore, from (68) we have

∥k1(t)− k2(t)∥2Y ≤ C

∫ t

0

∥∥η2
1(s)− η2

2(s)
∥∥2
Y
ds. (84)

Form the previous inequality and estimates (83), (82) and (77) it follows now

that

∥Λ (η1, λ1) (t)− Λ (η2, λ2) (t)∥
2
H×Y×V ′

≤ C

∫ t

0

∥(η1, λ1) (s)− (η2, λ2) (s)∥
2
H×Y×V ′ ds.

(85)
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Let is introduce the following notations
I1 =

∫ t

0

∥(η1, λ1) (s)− (η2, λ2) (s)∥H×Y×V ′ ds,

...

Ik =

∫ t

0

∫ sk−1

0

· · ·
∫ s1

0

∥(η1, λ1) (r)− (η2, λ2) (r)∥H×Y×V ′ ,

and by induction, by denoting by Λm the m power of the operator Λ, we obtain

∥Λm (η1, λ1) (t)− Λm (η2, λ2) (t)∥H×Y×V ′

≤ Cm

(
m∑
k=1

Ck
mI

m−k∥(η1, λ1) (t)− (η2, λ2) (t)∥H×Y×V ′

)
,

for all t ∈ (0, T ) and m ∈ N,

Im−k∥ ((η1, λ1)− (η2, λ2)) ∥H×Y×V ′ =

∫
(m−k) fois

.

∫
∥(η1, λ1)− (η2, λ2)∥H×Y×V ′

≤
∫ s

0

∫
· · ·
∫
(m−k) fois

∥(η1, λ1)− (η2, λ2)∥C(0,T ;H×Y×V ′)

≤ tm−k

k!
∥(η1, λ1)− (η2, λ2)∥C(0,T ;H×Y×V ′)

≤ Tm−k

k!
∥(η1, λ1)− (η2, λ2)∥C(0,T ;H×Y×V ′) ,

∥Λm (η1, λ1) (t)− Λm (η2, λ2) (t)∥C(0,T ;H×Y×V ′)

≤ Cm

(
m∑
k=1

Ck
m

Tm−k

k!
∥(η1, λ1) (t)− (η2, λ2) (t)∥C(0,T ;H×Y×V ′)

)

≤ (CT )m

m!
∥(η1, λ1) (t)− (η2, λ2) (t)∥

2
C(0,T ;H×Y×V ′) ,

Thus implies that for m large enough, the operator Λm of Λ is a contraction

on Banach space C (0, T ;H× Y × V ′) . So Λm has a unique fixed point (η∗, λ∗) ∈
C (0, T ;H× Y × V ′), and therefore (η∗, λ∗) is a unique fixed point of Λ.

□

Now we have every thing that is required to prove theorem 3.1.

Existence. Let (η∗, λ∗) ∈ C(0, T ;H× Y × V ′) be the fixed point of Λ and

u = uη∗ , k = kη∗ , φη∗ = φ, θ = θλ∗ (86)

σ = Aε(u̇) + E∗∇φ(t) + ση∗λ∗ , (87)

D = Eε(u) +B∇(φ). (88)
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We prove that (u,σ,k, φ, θ,D) satisfies (44)-(50) and (51)-(56). Indeed, we

write (69) for η∗ = η, λ∗ = λ and use (86)-(87) to obtain that (44) is satisfied.

Now we consider (57) for η∗ = η and use the first equality in (86) to find

(Aε(u̇η(t)), ε(v − u̇η(t)))H
+
(
η1∗(t),v − u̇η(t)

)
H + j (v)− j (u̇η(t)) ≥ (f(t),v − u̇η(t))V
∀v ∈ V, t ∈ [0, T ].

(89)

The equalities Λ1 (η∗, λ∗) = η1∗, Λ2 (η∗, λ∗) = η2∗, and Λ3 (η∗, λ∗) = λ∗. com-

bined with (74)-(76), (86) and (87) show that for all v ∈ V ,

(η1∗ (t) ,v)H×V = (B(εu(t)), ε(v))H + (E∗∇φ(t), ε(v))H,

+

(∫ t

0

G(σ(s)−Aε(u̇(s))− E∗∇φ(t), ε(u(s)), θ(s),k(s))ds, ε(v)
)

H
,

(90)

η2∗(t) = Φ (σ(s)−Aε(u̇(s)− E∗∇φ(t), ε (u(t)) , θ(t),k) . (91)

λ∗(t) = ψ (σ(s)−Aε(u̇(s)− E∗∇φ(t), ε (u(t)) , θ(t),k) . (92)

From (92) and (68) we see that (45) is satisfied. We substitute (90) in (89)) and

use (44) to see that (47) is satisfied.

We write now (62) for η = η∗ and use (86) to find (48). Next, (50), The

regularities (51), (52), and (55) follow from Lemmas 3.2, 3.3, and the relation (68).

We write (66) for λ = λ∗ and use (86) and (92) to find that (49) is satisfied, and

the regularity (54) follows from lemma 3.4. The regularity σ ∈ C(0, T ;H) follows

from Lemmas 3.5.

Let now t1, t2 ∈ [0, T ], from (12), (32), (33) and (88), we conclude that there

exists a positive constant C > 0 verifying

∥D (t1)−D (t2)∥H ≤ C (∥φ (t1)− φ (t2)∥W + ∥u (t1)− u (t2)∥V) .

The regularity of u and φ given by (51) and (52) implies

D ∈ C(0, T ;H). (93)

We choose ϕ ∈ D(Ω)d in (48) and using (43) we find

divD∗(t) = q0(t), ∀t ∈ [0, T ]. (94)

Property (56) follows from (35),(93) and (94) which concludes the existence part

the theorem.

Uniqueness. The uniqueness of the solution is a consequence of the uniqueness

of the fixed point of operator Λ.
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4. Examples of subdifferential conditions with friction

In this section, we report some examples of contact laws that condition (22),

which were presented in a previous paper (see reference [4]). Also note that the

relevant boundary value problem for each example has a unique weak solution

Example 4.1. Bilateral contact with Tresca’s friction law. In this case, the

boundary conditions on the contact surface are derived as follows
uν = 0, |στ | ≤ g,

|στ | < g =⇒ u̇τ = 0, on Γ3 × (0, T )

|στ | = g =⇒ u̇τ = −λστ , λ ≥ 0

(95)

Here λ represents the friction bound, i.e. the magnitude of the limiting friction

at which slip occurs. The contact is assumed to be bilateral, i.e. there is no loss of

contact during the process.

Let V denote the closed subspace of H1 defined by

V = {v ∈ H1 | v = 0 on Γ1, uν = 0 on Γ3} .

(22) holds with the choice h(v) = g|vτ |. Where g ∈ L∞(R), g ≥ 0.

Example 4.2. Bilateral contact with elastic-viscoplastic friction condition. We

consider problems with the boundary conditions

uν = 0, στ = −g |u̇τ |p−1 u̇τ on Γ3 × (0, T ) (96)

where g > 0 is the coefficient of friction and 0 < p ≤ 1. In this case we consider

V = {v ∈ H1 | v = 0 on Γ1, uν = 0 on Γ3} .

and

h(v) =
g

p+ 1
|vτ |p+1 , g ∈ L∞(R).

Example 4.3. elastic-viscoplastic contact with Tresca’s friction law. Here the

model of the contact reads as follows
−σν = k |u̇ν |q−1 u̇ν , |στ | ≤ g,

|στ | < g =⇒ u̇τ = 0, on Γ3 × (0, T )

|στ | = g =⇒ u̇τ = −λστ , λ ≥ 0

(97)

where g, k ≥ 0 and 0 < q ≤ 1. We choose U = H1, V = {v ∈ H1 | v = 0 on Γ1}
and

h(v) =
k

q + 1
|vν |q+1 + g |vτ | , g, k ∈ L∞(R).
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Example 4.4. Elastic-viscoplastic contact with friction. We have the following

boundary condition

−σν = k |u̇ν |q−1 u̇ν , στ = −g |u̇τ |p−1 u̇τ on Γ3 × (0, T ), (98)

We take k, g > 0, 0 < p, q ≤ 1, U = H1,V = {v ∈ H1 | v = 0 on Γ1} and

h(v) =
k

q + 1
|vν |q+1 +

g

p+ 1
|vτ |p+1 , g, k ∈ L∞(R).

Since the assumptions (40) is satisfied for each example, we may apply Theorem

3.1, and we deduce that there is a unique weak solution to each problem.
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