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n-projective modules in n-abelian category

Feysal Hassani, Samira Hashemi, and Rasul Rasuli∗

Abstract. In this paper, we introduce and clarify a new presentation between

the n-exact sequence and the n-projective module. Also, we obtain some new

results about them.

1. Introduction

Category theory formalizes mathematical structures and their concepts in terms

of a labelled directed graph called a category, whose nodes are called objects, and

their edges called arrows (or morphisms). This category has two basic properties:

the ability to compose the arrows associatively and the existence of an identity arrow

for each object. The language of category theory has been employed to formalize

concepts of other high-level abstractions such as sets, rings, and groups. Several

terms were utilized in category theory, including ”morphism” which is used differ-

ently from their usage in the rest of mathematics. In category theory, morphisms

obey specific conditions of theory. Samuel Eilenberg and Saunders Mac Lane intro-

duced the concepts of categories, functors, and natural transformations in 1942-45

in their study of algebraic topology, to understand the processes that preserve the

mathematical structure. Category theory has practical applications in programming

language theory, for example, the usage of monads in functional programming. It

may also be used as an axiomatic foundation for mathematics, as an alternative to

set theory and other proposed foundations. In mathematics, an abelian category is

a category in which morphisms and objects can be added and in which kernels and

cokernels exist and have desirable properties. The motivating prototype example of
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an abelian category is the category of abelian groups, Ab. The theory originated

to unify several cohomology theories by Alexander Grothendieck and independently

in the slightly earlier work of David Buchsbaum. Abelian categories are very stable

categories. For example, they are regular and satisfy the snake lemma. The class

of Abelian categories is closed under several categorical constructions, for instance,

the category of chain complexes of an Abelian category, or the category of functors

from a small category to an Abelian category are Abelian as well. These stability

properties make them inevitable in homological algebra and beyond. This theory

has significant applications in algebraic geometry, cohomology, and pure category

theory. The Abelian categories are named after Niels Henrik Abel. An exact se-

quence is a concept in mathematics, especially in group theory, ring, and module

theory, homological algebra, as well as in differential geometry. An exact sequence

is a sequence, either finite or infinite, of objects and morphisms between them such

that the image of one morphism equals the kernel of the next. Homological algebra

is the branch of mathematics that studies homology in a general algebraic setting. It

is a relatively young discipline, whose origins can be traced to investigations in com-

binatorial topology (a precursor to algebraic topology) and abstract algebra (theory

of modules and syzygies) at the end of the 19th century, chiefly by Henri Poincare

and David Hilbert. The development of homological algebra has closely intertwined

with the emergence of category theory. By and large, homological algebra is the

study of homological functors and the intricate algebraic structures that they entail.

One quite useful and ubiquitous concept in mathematics is that of chain complexes,

which can be studied both through their homology and cohomology. Homologi-

cal algebra affords the means to extract information contained in these complexes

and present it in the form of homological invariants of rings, modules, topological

spaces, and other ’tangible’ mathematical objects. A powerful tool for doing this

is provided by spectral sequences. From its very origins, homological algebra has

played an enormous role in algebraic topology. Its sphere of influence has grad-

ually expanded and presently includes commutative algebra, algebraic geometry,

algebraic number theory, representation theory, mathematical physics, operator al-

gebras, complex analysis, and the theory of partial differential equations. K-theory is

an independent discipline that draws upon methods of homological algebra, as does

the noncommutative geometry of Alain Connes. This paper is organized as follows.

The authors [6, 7, 8] investigated some properties of n-algebraic structures.

In this paper, we show to prove the important theorems of n-projective modules .

Finally, we recall the definition of n-projective module, and we give an open problem

about some theorems of n-projective modules.
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2. Preliminaries

In this paper all rings R in this paper are assumed to have an identity element

1 (or unit) (where r1 = r = 1r for all r ∈ R). We do not insist that 1 ̸= 0; however,

should 1 = 0, then R is the zero ring having only one element. let C be an additive

category of left R-modules, and P be a projective left R-module. In this section,

we recall some of the fundamental concepts and definitions, which are necessary for

this paper. For details, we refer to [4,6,7,9,10,11].

Definition 2.1. A category C is abelian if

(1) C has a zero object.

(2) For every pair of objects there is a product and a sum.

(3) C Every map has a kernel and cokernel.

(4) C Every monomorphism is a kernel of a map.

(5) C Every epimorphism is a cokernel of a map.

Definition 2.2. Let C be an additive category and f : A −→ B a morphism in

C. A weak cokernel of f is a morphism g : B −→ C such that for all C ′ ∈ C the

sequence of abelian groups

C(C,C ′)
ĝ−→ C(B,C ′)

f̂−→ C(A,C ′)

is exact. Equivalently, g is a weak cokernel of f if fg = 0 and for each morphism

h : B −→ C ′ such that fh = 0 there exists a (not necessarily unique) morphism

p : C −→ C ′ such that h = gp. These properties are subsumed in the following

commutative diagram:

A B C

C ′

f

0

g

∀h
∃p

Clearly, a weak cokernel g of f is a cokernel of f if and only if g is an epimor-

phism.The concept of weak kernel is defined dually.

Definition 2.3. Let R be a commutative ring with 1. Let S be a set. A free

R-module M on generators S is an R-module M and a set map i : S −→ M such

that, for any R-module N and any set map f : S −→ N , there is a unique R-module

homomorphism f̄ : M −→ N such that f̄ oi = f : S −→ N . The elements of i(S) in

M are an R-basis for M .

Definition 2.4. A covariant functor T :R Mod −→ Ab is an exact functor if,

for every exact sequence

0−→A
i−→ B

p−→ C −→ 0,



26 FEYSAL HASSANI, SAMIRA HASHEMI, AND RASUL RASULI∗

the sequence

0−→T (A)
T (i)−→ T (B)

T (p)−→ T (C) −→ 0

is also exact. A contravariant functor T :R Mod −→ Ab is an exact functor if there

is always exactness of

0−→T (C)
T (p)−→ T (B)

T (i)−→ T (A) −→ 0.

Definition 2.5. A left R-module F is a free left R-module if F is isomorphic to

a direct sum of copies of R: that is, there is a (possibly infinite) index set B with

F =
⊕

b∈B Rb, where Rb =< b >∼= R for all b ∈ B. We call B a basis of F .

By the definition of direct sum, each m ∈ F has a unique expression of the form

m =
∑
b∈B

rbb,

where rb ∈ R and almost all rb = 0. It follows that F =< B >.

Definition 2.6. Chain maps f, g : (C•, d•) −→ (C ′
•, d

′
•) are homotopic, denoted

by f ≃ g, if, for all n, there is a map s = (sn) : C• −→ C ′
• of degree +1 with

fn − gn = d′
n+1

sn + sn−1dn.

Cn+1 Cn Cn−1 .

C ′n+1 C ′n C ′n−1 .

dn+1

fn+1

dn

fn

sn
fn−1

sn−1

d′n+1 d′n

A chain maps f : (C•, d•) −→ (C ′
•, d

′
•) is null-homotopic if f ≃ 0, where 0 is the

zero chain map.

Definition 2.7. A left R-module P is projective if, whenever p is surjective

and h is any map, there exists a lifting g; that is, there exists a map g making the

following diagram commute:

P

A A′′ 0.

g
h

p

Definition 2.8. Let C be an additive category and d0 : X0 −→ X1 a morphism

in C. An n-coker of d0 is a sequence

(d1, ..., dn) : X1 d1−→ X2 d2−→ ...
dn−→ Xn+1

such that, , for all Y ∈ C the induced sequence of abelian groups

0 −→ C(Xn+1, Y )
d̂n−→ C(Xn, Y )

d̂n−1

−→ ...
d̂1−→ C(X1, Y )

d̂0−→ C(X0, Y )
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is exact. Equivalently, the sequence (d1, ..., dn) is an n-coker of d0 if for all 1 ≤ k ≤
n− 1 the morphism dk is a weak cokernel of dk−1, and dn is moreover a cokernel of

dn−1. In this case, we say the sequence

X0 d0−→ X1 d1−→ X2 d2−→ ...
dn−→ Xn+1

is right n-exact.

Remark 2.1. When we say n-cokernel we always means that n is a positive

integer. We note that the notion of 1-cokernel is the same as cokernel. we can

define n- kernel and left n-exact sequence dually.

Definition 2.9. Let C be an additive category. An n-exact sequence in C is a

complex

X0 d0−→ X1 d1−→ ...
dn−1

−→ Xn dn−→ Xn+1 (1)

in Chn(C) such that (d0, ..., dn−1) is an n-ker of dn, and (d1, ..., dn) is an n-coker

of d0. The sequence (3.1) is called n-exact if it is both right n-exact and left n-exact.

Definition 2.10. Let n be a positive integer. An n-abelian category is an

additive category C which satisfies the following axioms;

(A0) The category C is idempotent complete.

(A1) Every morphism in C has n-ker and n-coker.

(A2) For every monomorphism f 0 : X0 −→ X1 in C and, for every n-cokernel

(f 0, f 1, ..., fn−1) of f 0, the following sequence n-exact:

X0 f0

−→ X1 f1

−→ ...
fn−1

−→ Xn fn

−→ Xn+1.

(A2op) For every epimorphism gn : Xn −→ Xn+1 in C and, for every n-kernel

(g0, g1, ..., gn−1) of gn, the following sequence n-exact:

X0 g0−→ X1 g1−→ ...
gn−1

−→ Xn gn−→ Xn+1.

Definition 2.11. Let C be an category of R-modules, Y i ∈ obj(C) for all 0 ≤
i ≤ n + 1, and f i for all 0 ≤ i ≤ n is a R-homomorphism in C. An R-module P is

n-projective if the sequence of R-module in C is left n-exact

Y 0 f0

−→ Y 1 f1

−→ Y 2 f2

−→ ...
fn−1

−→ Y n fn

−→ Y n+1

if there is P ∈ C the induced sequence of abelian groups

HomC(P, Y
0)

f̂0

−→ HomC(P, Y
1)

f̂1

−→ HomC(P, Y
2)

f̂2

−→

...
ˆfn−2

−→ HomC(P, Y
n−1)

ˆfn−1

−→ HomC(P, Y
n)

f̂n

−→ HomC(P, Y
n+1) −→ 0
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is left n-exact.

Remark 2.2. The functors HomR(X,□) and HomR(□, Y ) almost preserve ex-

act sequences; they are left exact functors. Similarly, the functors □ ⊗R Y and

X ⊗R □ almost preserve exact sequences; they are right exact functors.

Proposition 2.3. (Extending by Linearity) Let R be a ring and let F be

the free left R-module with basis X. If M is any left R-module and if f : X −→ M

is any function, then there exists a unique R-map f̃ : F −→ M with f̃µ = f , where

µ : X −→ F is the inclusion; that is, f̃ = f(x) for all x ∈ X, so that f̃ extends f .

F

X M

f̃
µ

f

Proposition 2.4. Every left R-module M is a quotient of a free left R-module

F . Moreover, M is finitely generated if and only if F can be chosen to be finitely

generated.

Proposition 2.5. Let C be an additive category and X a complex in Chn(C)
such that (d1, ..., dn) is an n-cokernel of d0. Then, d0 is a split monomorphism if

and only if X is a contractible n-exact sequence.

Proposition 2.6. Let C be an category of R-modules, Y i ∈ obj(C) for all 0 ≤
i ≤ n+ 1, and f i for all 0 ≤ i ≤ n is a morphism in C. A direct sum of R-modules

⊕i∈IPi is n-projective if only if Pi is n-projective for every i ∈ I and I is finite.

3. n-projective modules

Let C be an additive category. An n-exact sequence in C is a

Remark 3.1. The functors HomR(X,□) and HomR(□, Y ) almost preserve n-

exact sequences; they are left exact functors. Similarly, the functors □ ⊗R Y and

X ⊗R □ almost preserve n-exact sequences; they are right exact functors.

Theorem 3.2. Let C be an category of R-modules, Y i ∈ obj(C) for all 0 ≤
i ≤ n + 1. Let F be a free left R-module. If Y a complex in Chn(C) such that

(f 0, ..., fn−1) is an n-kernel of dn, there is F ∈ C the induced sequence of abelian

groups

HomC(F, Y
0)

f̂0

−→ HomC(F, Y
1)

f̂1

−→ HomC(F, Y
2)

f̂2

−→

...
ˆfn−2

−→ HomC(F, Y
n−1)

ˆfn−1

−→ HomC(P, Y
n)

f̂n

−→ HomC(F, Y
n+1) −→ 0

is left n-exact.
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Proof. Let B be a basis of F . For each b ∈ B, and for all 1 ⩽ k ⩽ n − 2 the

R-homomorphism fk−1 is a weak kernel of dk, and fn−1 is moreover a kernel of dn.

In the following diagram

F

Y k−1 Y k Y k+1,

∃θ
g

0

fk−1 fk

for each b ∈ B, the element g(b) ∈ Y k has the form g(b) = fk−1(yk−1) for some

yk−1 ∈ Y k−1, because the R-homomorphism fk−1 is a weak kernel of fk, there is

dkg(b) = 0 and fkfk−1(yk−1) = dkg(b) = 0; by the Axiom of Choice, there is a

function u : B −→ Y k−1 with u(b) = yk−1 for all b ∈ B. By Proposition (2.3) gives

an R-homomorphism θ : F −→ A with θ(b) = yk−1 for all b ∈ B. Now

fk−1θ(b) = fk−1(yk−1) = g(b),

so that dk−1θ agrees with θ on the basis B; since < B >= F , we have dk−1θ = g.

By F be a free left R-module and, Hom(F,□) is an additive functor RMod −→
Ab, so F the induced sequence of abelian groups

HomC(F, Y
0)

f̂0

−→ HomC(F, Y
1)

f̂1

−→ HomC(F, Y
2)

f̂2

−→

...
ˆfn−2

−→ HomC(F, Y
n−1)

ˆfn−1

−→ HomC(P, Y
n)

f̂n

−→ HomC(F, Y
n+1) −→ 0

is left n-exact. □

Theorem (3.3) says that every free left R-module is n-projective.

Proposition 3.3. Let C be an category of R-modules, Y i ∈ obj(C) for all 0 ≤
i ≤ n + 1. An left R-module P is n-projective if and only if HomR(P,□) is an

n-exact functor.

Proof. If P is an n-projective, then given g : P −→ Y k, there exists a R-

homomorphism θ : P −→ Y k−1 whit fk−1θ = g. Thus, if g ∈ HomR(F, Y
k), then

g = fk−1θ = f̂k−1(θ) ∈ Imf̂k−2,

□

and so fk−1 is a weak kernel of f̂k−2. Hence, Hom(P,□)nis an left n-exact

functor.

For the converse, assume that Hom(P,□) is an n-exact functor, so that fk−1 is

a weak kernel of f̂k−2: if g ∈ Hom(P, Y
k−1) with g = f̂k−1(θ) = dk−1θ. This says

that given dk−1 and g, there is exists a R-homomorphism θ making the diagram

commutative,
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P

Y k−1 Y k Y k+1,

∃θ
g

0

fk−1 fk

that is, P is n-projective.

Remark 3.4. Since HomR(P,□) is a left n-exact functor, The thrust of the

Proposition (3.3) is that f̂k−1 is a weak kernel of f̂k−2, whenever fk−1 is a weak

kernel of fk−2 for all 0 ≤ i ≤ n+ 1.

Definition 3.1. Let C be an category of R-modules, Y i ∈ obj(C) for all 0 ≤ i ≤
n+1, and f i for all 0 ≤ i ≤ n is a R-homomorphism in C. For all Y i, 1 ≤ i ≤ n+1

there exists a submodule Si ∈ C of left R-module Y i such that in the complex of

R-module in C
Y 0 f0

−→ Y 1 f1

−→ Y 2 f2

−→ ...
fn−1

−→ Y n fn

−→ Y n+1

there exists an R-homomorphism ji : Y i −→ Si, called a n-retraction, with ji(si) =

si for all si ∈ Si, 1 ≤ i ≤ n + 1 as R-homomorphism chain maps j = (ji) :

(Y•, f•) −→ (S•, k•) making the following diagram commute:

Y 0 Y 1 Y 2 ... Y n Y n+1

S0 S1 S2 ... Sn Sn+1

j0

f0 fn

jn+1

k0 kn

Equivalently, ji is a n-retraction if and only if jiii = 1Si , where ii : Si −→ Y i is

the inclusion.

Corollary 3.5. Let C be an category of R-modules, Y i ∈ obj(C) for all 0 ≤ i ≤
n+1, and f i for all 0 ≤ i ≤ n is a R-homomorphism in C. For all Y i, 1 ≤ i ≤ n+1

Y 0 f0

−→ Y 1 f1

−→ Y 2 f2

−→ ...
fn−1

−→ Y n fn

−→ Y n+1,

a submodule Si ∈ C of a left R-module Y i is a direct summand if only if there

exists a n-retraction ji : Y i −→ Si.

Proof. In this case, we let ii : Si −→ Y i be the inclusion. We show that Y i =

Si⊕T i, where T i = kerji for all 1 ≤ i ≤ n+1. If yi ∈ Y i, then yi = (yi−jiyi)+jiyi.

Plainly, jiyi ∈ imji = Si. On the other hand, ji(yi−jiyi) = jiyi−jijiyi = 0, because

jiyi ∈ Si and so jijiyi = jiyi for all 1 ≤ i ≤ n+ 1. Therefore, Y i = Si ⊕ T i.

If yi ∈ Si, then jiyi = yi; if yi ∈ T i = ker ji, then jiyi = 0 for all 1 ≤ i ≤ n + 1.

Hence if yi ∈ Si ∩ T i, then yi = 0. Therefore, Si ∩ T i = {0}, and Y i = Si ⊕ T i for

all 1 ≤ i ≤ n+ 1.

For the converse, if Y i = Si ⊕ T i, then each yi ∈ Y i has unique expression of

the form yi = Si + ti, where si ∈ Si and ti ∈ T i for all 1 ≤ i ≤ n + 1. It is easy

to check that ji : Y i −→ Si, defined by ji : si + ti 7−→ si, and the chain maps

j = (ji) : (Y•, f•) −→ (S•, k•) making the following diagram commute:
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Y 0 Y 1 Y 2 ... Y n Y n+1

S0 S1 S2 ... Sn Sn+1

j0

f0 fn

jn+1

k0 kn

is a n-retraction Y i −→ Si for all 1 ≤ i ≤ n+ 1. □

Definition 3.2. Let C be an category of R-modules, Y i ∈ obj(C) for all 0 ≤
i ≤ n + 1, and f i for all 0 ≤ i ≤ n is a R-homomorphism in C. A complex of left

R-modules in C

Y 0 f0

−→ Y 1 f1

−→ Y 2 f2

−→ ...
fn−1

−→ Y n fn

−→ Y n+1

is n-split if there exists a R-homomorphism di : Y i+1 −→ Y i with f idi = 1Y i+1 for

all 1 ≤ i ≤ n.

Note that dif i is a n-retraction Y i −→ imdi for all 1 ≤ i ≤ n+ 1.

Proposition 3.6. Let C be an category of R-modules, Y i ∈ obj(C) for all 0 ≤
i ≤ n + 1, and f i for all 0 ≤ i ≤ n is a R-homomorphism in C. A complex of left

R-modules in C

Y 0 f0

−→ Y 1 f1

−→ Y 2 f2

−→ ...
fn−1

−→ Y n fn

−→ Y n+1

is n-split, then Y i ∼= Y i−1 ⊕ Y i+1 for all 1 ≤ i ≤ n.

Proof. We show that Y i = imf i−1 ⊕ imdi , where di : Y i+1 −→ Y i satisfies

f idi = 1Y i+1 for all 1 ≤ i ≤ n. If yi ∈ Y i, then f iyi ∈ Y i+1 and yi−di(f iyi) ∈ kerf i,

for f i(yi − di(f iyi)) = f iyi − f idi(f iyi) = 0 because f idi = 1Y i+1 for all 1 ≤ i ≤ n.

By exactness, there is yi−1 ∈ Y i−1 with f i−1yi−1 = yi − di(f iyi). It follows that

Y i = imf i−1 + imdi for all 1 ≤ i ≤ n. It remains to prove imf i−1 ∩ imdi = 0.

If f i−1yi−1 = y = diyi+1, then f iy = f if i−1yi−1 = 0, because f if i−1 = 0, whereas

f i−1y = f i−1(diyi+1) = yi+1, because f idi = 1Y i+1 for all y ∈ Y i, yi ∈ Y i and

yi+1 ∈ Y i+1, for all 1 ≤ i ≤ n. Therefore, y = diyi+1 = 0, and so Y i = Y i−1 ⊕ Y i+1.

□

Proposition 3.7. Let C be an category of R-modules, Y i ∈ obj(C) for all 0 ≤
i ≤ n + 1, and f i for all 0 ≤ i ≤ n is a R-homomorphism in C, and a complex of

left R-modules in C

Y 0 f0

−→ Y 1 f1

−→ Y 2 f2

−→ ...
fn−1

−→ Y n fn

−→ Y n+1.

A left R-module P ∈ C is n-projective if and only if n-exact sequence

−→ Y i−1 f i−1

−→ Y i f i

−→ Y i+1

for all 1 ≤ i ≤ n, and Y i+1 = P , n-splits.
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Proof. If P is n-projective, then for a complex of left R-modules in C for all

1 ≤ i ≤ n, and Y i+1 = P

−→ Y i−1 f i−1

−→ Y i f i

−→ Y i+1

the induced the sequence of abelian groups

−→ HomC(P, Y
i−1)

f̂ i−1

−→ HomC(P, Y
i)

f̂ i

−→ HomC(P, Y
i+1) −→ 0

is left n-exact. Then the exists θi : P −→ Y i with 1P = HomC(Y
i, P ) = f iθi, for all

1 ≤ i ≤ n, that is Y i+1 = P , P is n-retract of Y i. By corollary (3.5) now gives the

result.

P

Y i P 0.

∃θi
1P

f i

Conversely, assume that every complex of left R-modules in C for all 1 ≤ i ≤ n

ending with n-split. Consider the complex in C

−→ Y i−1 f i−1

−→ Y i f i

−→ C

there is P ∈ C the induced the sequence in abelian groups

−→ HomC(P, Y
i−1)

f̂ i−1

−→ HomC(P, Y
i)

f̂ i

−→ HomC(P,C) −→ 0

is left n-exact. Let F be an free leftR-module for which there exists aR-homomorphism

β : F −→ P (by the Theorem 2.4), and consider the augmented diagram

F P

Y i C 0.

ki

β

ji
α

f i

□

4. One Open Problem

Proposition 4.1. Let C be an category of R-modules, Y i, Si ∈ obj(C) for all

0 ≤ i ≤ n + 1. Get R-homomorphism chain maps j = (ji) : (Y•, f•) −→ (S•, k•)

making the following diagram commute:

Y 0 Y 1 Y 2 ... Y n Y n+1

S0 S1 S2 ... Sn Sn+1

j0

f0 fn

jn+1

k0 kn

Equivalently,



n-PROJECTIVE MODULES IN n-ABELIAN CATEGORY 33

−→ Y i−1 Y i Y i+1

−→ Si−1 Si Si+1

ji−1

f i−1

ji+1

ki−1

Y i, Si are n-projective, then there is an isomorphism

Y i−1 ⊕ Si = Y i ⊕ Si−1.
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