Mathematical Analysis and its Contemporary Applications

Volume 5, Issue 3, 2023, 1–10

doi: 10.30495/maca.2023.2000990.1074

ISSN 2716-9898

2-simultaneous quasi-Chebyshev and weakly-Chebyshev subspaces in quotient generalized 2-normed spaces

M. Abrishami-Moghaddam

ABSTRACT. In this paper, we present characterizations of 2-simultaneous quasi-Chebyshevity and 2-simultaneous weakly Chebyshevity in quotient generalized 2-normed spaces.

1. Introduction and preliminaries

One of generalization of normed spaces is 2-normed spaces that play a critical role in functional analysis. The concept of linear 2-normed spaces was firstly introduced by Gähler [9] in 1965, and since then, many others have studied and written about it [7, 8]. Z. Lewandowska introdused a generalization of Gähler 2-normed spaces under the name of generalized 2-normed space and she investigated some of their characteristics between 1999 and 2006 [12]-[17].

Many mathematicians are interested by the idea of the best approximation and its different versions considering its importance in functional analysis [10, 18, 19]. Some authors (such as [2, 1, 4, 20, 21, 22]) have recently produced results on best approximation theory in generalized 2-normed spaces. The theory of best simultaneous approximation is one kind of best approximation for which significant findings have been obtained (for instance [5, 6, 11, 19]). Best simultaneous approximation in quotient normed spaces is studied by M. Iranmanesh and H. Mohebi in [11], and a characterization of 2-simultaneous pseudo-Chebyshevity in quotient generalized 2-normed spaces is studied by M. Abrishami-Moghaddam and T. Sistani in [3]. In

Key words and phrases. Generalized 2-normed space, 2-bounded, 2-best simultaneous approximation, 2-simultaneous quasi-Chebyshev, 2-simultaneous weakly-Chebyshev

This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

²⁰²⁰ Mathematics Subject Classification. Primary: 41A28; Secondary: 46B50, 54B15.

this article, we will use elements from the dual space to introduce and analyze 2-simultaneous quasi-Chebyshev and 2-simultaneous weakly-Chebyshev subspaces of generalized 2-normed spaces with respect to a 2-bounded set, and then examine their transmission to and from quotient spaces.

Definition 1.1. [12, 13] Let X and Y be linear spaces, D be a non-empty subset of $X \times Y$ such that for every $x \in X$ and $y \in Y$, the sets

$$D_x = \{ y \in Y : (x, y) \in D \} \; ; \; D_y = \{ x \in X : (x, y) \in D \}$$

are linear subspaces of the spaces Y and X, respectively. A function $\|.,.\|:D\to [0,\infty)$ is called a *generalized 2-norm* on D if it satisfies the following conditions:

 $(N1)\|\alpha x,y\| = |\alpha|\|x,y\| = \|x,\alpha y\|$ for all $(x,y) \in D$ and every scalar α .

 $(N2)||x,y+z|| \le ||x,y|| + ||x,z||$ for all $(x,y),(x,z) \in D$.

 $(N3)||x+y,z|| \le ||x,z|| + ||y,z||$ for all $(x,z), (y,z) \in D$.

Then $(D, \|., .\|)$ is called a 2-normed set. In particular, if $D = X \times Y$, $(X \times Y, \|., .\|)$ is called a *generalized 2-normed space*. Moreover, if X = Y, then generalized 2-normed space is denoted by $(X, \|., .\|)$.

Definition 1.2. [16] Let X be a real linear space. Denote by \mathcal{X} a non empty subset of $X \times X$ with the property $\mathcal{X} = \mathcal{X}^{-1}(\text{Symmetric})$ and such that the set $\mathcal{X}^y = \{x \in \mathcal{X}; (x;y) \in \mathcal{X}\}$ is a linear subspace of X, for all $y \in X$. A function $\|.,.\|: \mathcal{X} \to [0,\infty)$ satisfying the following conditions:

 $(S1)||x,y|| = ||y,x|| \text{ for all } (x;y) \in \mathcal{X},$

 $(S2)\|\alpha x,y\|=|\alpha|\|x,y\|=\|x,\alpha y\|$ for any real number α and all $(x,y)\in\mathcal{X}$,

 $(S3)\|x,y+z\|\leq \|x,y\|+\|x,z\| \text{ for all } x,y,z\in X \text{ such that } (x,y),(x,z)\in\mathcal{X},$

will be called a generalized symmetric 2-norm on \mathcal{X} . The set \mathcal{X} is called a symmetric 2-normed set. In particular, if $\mathcal{X} = X \times X$, the function $\|.,.\|$ will be called a generalized symmetric 2-norm on X and the pair $(X; \|.,.\|)$ a generalized symmetric 2-normed space.

The following examples are some generalized 2-normed spaces and symmetric generalized 2-normed spaces.

Example 1.3. [17] 1) Let X be a real linear space having two norms $\|.\|_1$ and $\|.\|_2$. Then $(X, \|., .\|)$ is a generalized 2-normed space with the 2-norm defined by

$$||x,y|| = ||x||_1.||y||_2 ; x,y \in X.$$

Specially if $\|.\|_1 = \|.\|_2$, our generalized 2-normed space will be a generalized symmetric 2-normed space.

2) Let X be a real inner product space. Then X is a symmetric generalized 2-normed space under the 2-norm

$$||x,y|| = |\langle x,y \rangle| \; ; \; \forall \; x,y \in X.$$

3) Let X be the linear space of all sequence of real numbers. Put

$$||x,y|| = \sum_{1}^{\infty} |x_n||y_n|,$$

where $x = \{x_n\}, y = \{y_n\} \in X$. Then $D = \{(x,y) \in X \times X : ||x,y|| < \infty\}$ is a symmetric 2-normed set and the function $||.,.|| : D \to [0,\infty)$ is a generalized symmetric 2-normed on D.

4) Let A be a Banach algebra and ||a,b|| = ||ab|| for all $a,b \in A$. Then, (A, ||.,.||) is a generalized 2-normed space.

Definition 1.4. Let $X \times Y$ be a generalized 2-normed linear space. $S_1 \times S_2$ is called a 2-bounded subset of $X \times Y$ if there exists r > 0 such that $||s_1, s_2|| < r$ for all $(s_1, s_2) \in S_1 \times S_2$.

Lemma 1.1. Let (X, ||.||) be a normed space, and let X be equipped with the following generalized 2-norm

$$||x,y|| = ||x||.||y||; \ \forall x,y \in X.$$

If S is a bounded set in X, then $S \times S$ is a bounded set in $X \times X$.

PROOF. Let S be a bounded set in X. Then there exists r > 0 such that ||x|| < r, for each $x \in S$. Then we have

$$||x,y|| = ||x||.||y|| < r.r = r^2,$$

for each $x, y \in S$. Therefore $S \times S$ is a 2-bounded set in $X \times X$.

Let $(X \times Y, \|., .\|)$ be a generalized 2-normed space and $W_1 \times W_2$ be a linear subspaces of $X \times Y$. A 2-functional $f: W_1 \times W_2 \to \mathbb{R}$ is called a bilinear 2-functional on $W_1 \times W_2$, whenever for all $x_1, x_2 \in W_1, y_1, y_2 \in W_2$ and $\lambda_1, \lambda_2 \in \mathbb{R}$;

- i) $f(x_1 + x_2, y_1 + y_2) = f(x_1, y_1) + f(x_1, y_2) + f(x_2, y_1) + f(x_2, y_2)$,
- ii) $f(\lambda_1 x_1, \lambda_2 y_1) = \lambda_1 \lambda_2 f(x_1, y_1).$

The set of all continuations bilinear 2-functional will be denoted by $(X \times Y)^*$ and it is called the dual space of $X \times Y$. Also we say that $f \in (M_1 \times M_2)^{\perp}$ when $f|_{M_1 \times M_2} = 0$.

The operator $\pi: X \times Y \longrightarrow \frac{X}{M_1} \times \frac{Y}{M_2}$ which is defined by $\pi(x,y) = (x + M_1, y + M_2)$, is called the *canonical map*.

Definition 1.5. [8] 1) The sequence $\{(x_n, y_n)\}$ in a generalized 2-normed space $X \times Y$ is called a 2-converges sequence to (x, y) if

$$\lim_{n \to \infty} ||x_n - x, b|| = 0; \quad \forall \ b \in Y,$$

and

$$\lim_{n \to \infty} ||a, y_n - y|| = 0; \quad \forall \ a \in X,$$

and we write $(x_n, y_n) \longrightarrow (x, y)$.

2) The sequence $\{(x_n, y_n)\}$ in a generalized 2-normed space $X \times Y$ is called a weakly 2-converges sequence to (x, y) if $\lim f(x_n, y_n) = f(x, y)$ holds for each $f \in (X \times Y)^*$.

Definition 1.6. Let $X \times Y$ be a generalized 2-normed linear space. A subset $S_1 \times S_2 \subseteq X \times Y$ is called *compact (weakly compact)*, if every sequence $\{(x_n, y_n)\}$ in $S_1 \times S_2$ has a subsequence $\{(x_{n_k}, y_{n_k})\}$ which 2-converges (weakly 2-converges) to an element $(x_0, y_0) \in S_1 \times S_2$.

Let $X \times Y$ be a generalized 2-normed linear space, $W_1 \times W_2$ a subset of $X \times Y$ and $S_1 \times S_2$ a 2-bounded subset of $X \times Y$. We define

$$d(S_1 \times S_2, W_1 \times W_2) = \inf_{(w_1, w_2) \in W_1 \times W_2} \sup_{(s_1, s_2) \in S_1 \times S_2} ||s_1 - w_1, s_2 - w_2||,$$

if there exists some $(w_1, w_2) \in W_1 \times W_2$ such that $\sup_{(s_1, s_2) \in S_1 \times S_2} ||s_1 - w_1, s_2 - w_2|| < \infty$. $S_1 \times S_2$ is called 2-simultaneous proximinal if for every $(s_1, s_2) \in S_1 \times S_2$ there exists an element $(w_{01}, w_{02}) \in W_1 \times W_2$ such that

$$d(S_1 \times S_2, W_1 \times W_2) = \sup_{(s_1, s_2) \in S_1 \times S_2} ||s_1 - w_{01}, s_2 - w_{02}||.$$

In this case $(w_{01}, w_{02}) \in W_1 \times W_2$ is called a 2-best simultaneous approximation to $S_1 \times S_2$ from $W_1 \times W_2$. The set of all 2-best simultaneous approximation to $S_1 \times S_2$ from $W_1 \times W_2$ will be denoted by $\mathbf{S}_{W_1 \times W_2}(S_1 \times S_2)$. If $S_1 \times S_2 = \{(x, y)\}$ where $(x, y) \in X \times Y$ then $\mathbf{S}_{W_1 \times W_2}(S_1 \times S_2)$ is the set of all 2-best approximation of (x, y) in $W_1 \times W_2$ that denoted by $P_{W_1 \times W_2}(x, y)$ and also $W_1 \times W_2$ is called a 2-proximinal subspace of $X \times Y$.

Let $M_1 \times M_2$ be a subspace of a generalized 2-normed linear space $X \times Y$ and $f \in (X \times M_2)^{\perp} \cap (M_1 \times Y)^{\perp}$. Define a bilinear 2-functional T_f on $\frac{X}{M_1} \times \frac{Y}{M_2}$ by $T_f(x + M_1, y + M_2) = f(x, y)$ for all $(x + M_1, y + M_2) \in \frac{X}{M_1} \times \frac{Y}{M_2}$. Then $T_f \in (\frac{X}{M_1} \times \frac{Y}{M_2})^*$ (the dual space of $\frac{X}{M_1} \times \frac{Y}{M_2}$).

Definition 1.7. Let $X \times Y$ be a generalized 2-normed linear space, $W_1 \times W_2$ a subspace of $X \times Y$ and $S_1 \times S_2$ a 2-bounded set in $X \times Y$. Then, $W_1 \times W_2$ is called

- (i) 2-simultaneous quasi-Chebyshev subspace if $\mathbf{S}_{W_1 \times W_2}(S_1 \times S_2)$ is compact subset of $W_1 \times W_2$ for all 2-bounded subset $S_1 \times S_2$ in $X \times Y$.
- (ii) 2-simultaneous weakly-Chebyshev subspace if $\mathbf{S}_{W_1 \times W_2}(S_1 \times S_2)$ is weakly compact subset of $W_1 \times W_2$ for all 2-bounded subset $S_1 \times S_2$ in $X \times Y$.

Theorem 1.2 ([2]). Let $(X \times Y, \|., .\|)$ be a generalized 2-normed linear space, and M_1 and M_2 be subspaces of X and Y respectively. Define

$$\|.,.\|: \frac{X}{M_1} \times \frac{Y}{M_2} \longrightarrow [0,+\infty)$$

$$||x + M_1, y + M_2|| = \inf_{(m_1, m_2) \in M_1 \times M_2} ||x + m_1, y + m_2||$$

for every $x \in X$ and $y \in Y$. Then $\|., \|$ is a generalized 2-norm on $\frac{X}{M_1} \times \frac{Y}{M_2}$.

In [2], the authors have shown that $\|.,.\|$ is a generalized 2-norm, which it is not necessary satisfying the conditions of 2-norm.

2. Main Results

We present characterizations of 2-simultaneous quasi-Chebyshevity and weakly-Chebyshevity in this section. Also, we shall use the following lemmas in the sequel which has been proved in [3].

Lemma 2.1. [3] Let $X \times Y$ be a generalized 2-normed linear space and $M_1 \times M_2$ a 2-proximinal subset of $X \times Y$. Then for each nonempty 2-bounded subset $S_1 \times S_2$ in $X \times Y$ we have

$$d(S_1 \times S_2, M_1 \times M_2) = \sup_{(s_1, s_2) \in S_1 \times S_2} \inf_{(w_1, w_2) \in M_1 \times M_2} ||s_1 - m_1, s_2 - m_2||.$$

Lemma 2.2. [3] Let $W_1 \times W_2$ be a 2-simultaneous proximinal subspace of generalized 2-normed space $X \times Y$, $M_1 \times M_2$ a 2-proximinal subspace of $X \times Y$ and $M_1 \times M_2 \subseteq W_1 \times W_2$. Then for each nonempty 2-bounded set $S_1 \times S_2$ with $M_1 \times M_2 \subseteq S_1 \times S_2 \subseteq X \times Y$ we have

$$d(S_1 \times S_2, W_1 \times W_2) = d\left(\frac{S_1}{M_1} \times \frac{S_2}{M_2}, \frac{W_1}{M_1} \times \frac{W_2}{M_2}\right).$$

Lemma 2.3. [3] Let $W_1 \times W_2$ be a 2-simultaneous proximinal subspace of generalized 2-normed space $X \times Y$, $M_1 \times M_2$ a 2-proximinal subspace of $X \times Y$, $S_1 \times S_2$ a 2- bounded set in $X \times Y$, $M_1 \times M_2 \subseteq W_1 \times W_2$. Then,

$$\pi\Big(\mathbf{S}_{W_1\times W_2}(S_1\times S_2)\Big)\subseteq \mathbf{S}_{\frac{W_1}{M_1}\times \frac{W_2}{M_2}}\Big(\frac{S_1}{M_1}\times \frac{S_2}{M_2}\Big).$$

Lemma 2.4. [3] Let $W_1 \times W_2$ be a 2-simultaneous proximinal subspace of generalized 2-normed space $X \times Y$, $M_1 \times M_2$ a 2-proximinal subspace of $X \times Y$, $S_1 \times S_2$ a 2-bounded set in $X \times Y$, $M_1 \times M_2 \subseteq W_1 \times W_2$. If $(w_{01} + M_1, w_{02} + M_2) \in S_{\frac{W_1}{M_1} \times \frac{W_2}{M_2}} \left(\frac{S_1}{M_1} \times \frac{S_2}{M_2} \right)$ and $(m_{01}, m_{02}) \in S_{M_1 \times M_2} (S_1 - w_{01}, S_2 - w_{02})$, then $(w_{01} + m_{01}, w_{02} + m_{02}) \in S_{W_1 \times W_2} (S_1 \times S_2)$.

Corollary 2.5. [3] Let $W_1 \times W_2$ be a 2-simultaneous proximinal subspace of generalized 2-normed space $X \times Y$, $M_1 \times M_2$ a 2-proximinal subspace of $X \times Y$, $S_1 \times S_2$ a 2-bounded set in $X \times Y$ and $M_1 \times M_2 \subseteq W_1 \times W_2$. Then,

$$\pi\left(\mathbf{S}_{W_1 \times W_2}(S_1 \times S_2)\right) = \mathbf{S}_{\frac{W_1}{M_1} \times \frac{W_2}{M_2}} \left(\frac{S_1}{M_1} \times \frac{S_2}{M_2}\right).$$

Now, we are ready to state and prove our main results.

Theorem 2.6. Let $M_1 \times M_2$ and $W_1 \times W_2$ are subspaces of generalized 2-normed linear space $X \times Y$ such that $M_1 \times M_2$ is finite dimensional and 2-proximinal and $W_1 \times W_2$ is 2-simultaneous proximinal. Then the following are equivalent.

(i) $\frac{W_1}{M_1} \times \frac{W_2}{M_2}$ is 2-simultaneous quasi-Chebyshev subspace of $\frac{X}{M_1} \times \frac{Y}{M_2}$. (ii) $(W_1 + M_1) \times (W_2 + M_2)$ is 2-simultaneous quasi-Chebyshev subspace of $X \times Y$.

PROOF. (i) \Rightarrow (ii) Let $S_1 \times S_2$ be a 2-bounded set in $X \times Y$ and $\{(a_n, b_n)\}$ a sequence in $\mathbf{S}_{\frac{W_1}{M_1} \times \frac{W_2}{M_2}}(S_1 \times S_2)$. Then by corollary 2.5, we have

$$(a_n + M_1, b_n + M_2) \in \mathbf{S}_{\frac{W_1 + M_1}{M_1} \times \frac{W_2 + M_2}{M_2}} (\frac{S_1}{M_1} \times \frac{S_2}{M_2}).$$

Since $\mathbf{S}_{\frac{W_1+M_1}{M_1}\times\frac{W_2+M_2}{M_2}}(\frac{S_1}{M_1}\times\frac{S_2}{M_2})$ is compact, there exists $(a_0,b_0)\in(W_1+M_1)\times(W_2+M_2)$ M_2) and a subsequence $\{(a_{n_k} + M_1, b_{n_k} + M_2)\}_{k \geq 1}$ of $\{(a_n + M_1, b_n + M_2)\}$ such that $(a_0 + M_1, b_0 + M_2) \in \mathbf{S}_{\frac{W_1 + M_1}{M_1} \times \frac{W_2 + M_2}{M_2}}(\frac{S_1}{M_1} \times \frac{S_2}{M_2})$ and

$$\{(a_{n_k} + M_1, b_{n_k} + M_2)\}_{k \ge 1} \longrightarrow (a_0 + M_1, b_0 + M_2).$$

Since $\|.,.\|$ is continuous, we have

$$||a_{n_k} - a_0 + M_1, b_{n_k} - b_0 + M_2|| \longrightarrow 0.$$
 (1)

Now, since $M_1 \times M_2$ is 2-proximinal in $X \times Y$, for each $k \geq 1$, there exists

$$(m_{1nk}, m_{2nk}) \in P_{M_1 \times M_2}(a_0 - a_{n_k}, b_0 - b_{n_k})$$

such that

$$||a_0 - a_{n_k} - m_{1nk}, b_0 - b_{n_k} - m_{2nk}|| = d((a_0 - a_{n_k}, b_0 - b_{n_k}), M_1 \times M_2)$$

$$= ||a_0 - a_{n_k} + M_1, b_0 - b_{n_k} + M_2.|| \qquad (2)$$

Therefore from 1 and 2, we have

$$\lim_{k \to \infty} ||a_0 - a_{n_k} + m_{1nk}, b_0 - b_{n_k} + m_{2nk}|| = 0.$$

Since $\{\|a_0 - a_{n_k} + m_{1nk}, b_0 - b_{n_k} + m_{2nk}\|\}$ is a convergence sequence of real numbers, it is bounded and therefore the sequence $\{(a_0 - a_{n_k} + m_{1n_k}, b_0 - b_{n_k} + m_{2n_k})\}$ is a 2-bounded sequence. On the other hand, since $(a_n, b_n) \in \mathbf{S}_{(W_1+M_1)\times(W_2+M_2)}(S_1 \times S_1)$ S_2) for all $n \geq 1,\{(a_{n_k},b_{n_k})\}$ is 2-bounded sequence. Hence $\{(m_{1nk},m_{2nk})\}$ is 2bounded sequence in $M_1 \times M_2$. Since $M_1 \times M_2$ is finite dimensional subspace of $X \times Y$, without loss of generality we can assume that $\{(m_{1nk}, m_{2nk})\}$ 2-convergence to an element $(m_{01}, m_{02}) \in M_1 \times M_2$. Let $(a', b') = (a_0 - m_{01}, b_0 - m_{02})$. Thus, $(a',b') \in (W_1+M_1) \times (W_2+M_2)$. Now for each $b \in Y$ we have

$$||a' - a_{n_k}, b|| = ||a_0 - m_{01} - a_{n_k}, b||$$

$$\leq ||a_0 - a_{n_k} - m_{1_{n_k}}, b|| + ||m_{1_{n_k}} - m_{01}, b||$$

for all $k \geq 1$. Hence

$$\lim_{k \to \infty} ||a' - a_{n_k}, b|| = 0.$$

Similarly for each $a \in X$ we get

$$\lim_{k \to \infty} ||a, b' - b_{n_k}|| = 0.$$

Now by definition of 2-convergence sequences 1.5,

$$(a_{n_k}, b_{n_k}) \longrightarrow (a', b').$$

Since $(a_{n_k}, b_{n_k}) \in \mathbf{S}_{(W_1 + M_1) \times (W_2 + M_2)}(S_1 \times S_2)$ for all $n \ge 1$ and $\mathbf{S}_{(W_1 + M_1) \times (W_2 + M_2)}(S_1 \times S_2)$ S_2) is closed, (a',b') is an element of $\mathbf{S}_{(W_1+M_1)\times(W_2+M_2)}(S_1\times S_2)$.

Therefore, $\mathbf{S}_{(W_1+M_1)\times(W_2+M_2)}(S_1\times S_2)$ is compact.

 $(ii) \Rightarrow (i)$ Let $S_1 \times S_2$ be an arbitrary 2-bounded set in $X \times Y$ and $(W_1 +$ M_1) × $(W_2 + M_2)$ be a simultaneous 2-quasi-Chebyshev subspace of $X \times Y$. Then $\mathbf{S}_{(W_1+M_1)\times(W_2+M_2)}(S_1\times S_2)$ is compact. But since the canonical map is continuous, so $\pi(\mathbf{S}_{(W_1+M_1)\times(W_2+M_2)}(S_1\times S_2))$ is compact. Thus by corollary 2.5,

$$\pi(\mathbf{S}_{(W_1+M_1)\times(W_2+M_2)}(S_1\times S_2)) = \mathbf{S}_{\frac{W_1+M_1}{M_1}\times\frac{W_2+M_2}{M_2}}(\frac{S_1}{M_1}\times\frac{S_2}{M_2})$$
$$= \mathbf{S}_{\frac{W_1}{M_1}\times\frac{W_2}{M_2}}(\frac{S_1}{M_1}\times\frac{S_2}{M_2}).$$

Therefore, $\frac{W_1}{M_1} \times \frac{W_2}{M_2}$ is simultaneous 2-quasi-Chebyshev subspace of $\frac{X}{M_1} \times \frac{Y}{M_2}$.

Corollary 2.7. Let $(X \times Y, \|., .\|)$ be a generalized 2-normed space and let $M_1 \times$ M_2 and $W_1 \times W_2$ are subspaces of $X \times Y$ such that $M_1 \times M_2 \subseteq W_1 \times W_2$. If $W_1 \times W_2$ is simultaneous 2-quasi-Chebyshev subspace of $X \times Y$, then $\frac{W_1}{M_1} \times \frac{W_2}{M_2}$ is 2-simultaneous quasi-Chebyshev subspace of $\frac{X}{M_1} \times \frac{Y}{M_2}$.

Corollary 2.8. Let $M_1 \times M_2$ and $W_1 \times W_2$ are subspaces of generalized 2-normed linear space $X \times Y$ such that $M_1 \times M_2$ is finite dimensional and 2-proximinal, $W_1 \times W_2$ is simultaneous 2-proximinal and $M_1 \times M_2 \subseteq W_1 \times W_2$. Then the following are equivalent.

- (i) $\frac{W_1}{M_1} \times \frac{W_2}{M_2}$ is 2-simultaneous quasi-Chebyshev subspace of $\frac{X}{M_1} \times \frac{Y}{M_2}$. (ii) $W_1 \times W_2$ is 2-simultaneous quasi-Chebyshev subspace of $X \times Y$.

Theorem 2.9. Let $M_1 \times M_2$ and $W_1 \times W_2$ are subspaces of generalized 2-normed linear space $X \times Y$ such that $M_1 \times M_2$ is finite dimensional and 2-proximinal and $W_1 \times W_2$ is simultaneous 2-proximinal. Then the following are equivalent.

- (i) $\frac{W_1}{M_1} \times \frac{W_2}{M_2}$ is simultaneous 2-weakly-Chebyshev subspace of $\frac{X}{M_1} \times \frac{Y}{M_2}$.
- (ii) $(W_1 + M_1) \times (W_2 + M_2)$ is 2-simultaneous weakly-Chebyshev subspace of $X \times Y$.

PROOF. (i) \Rightarrow (ii) Let $S_1 \times S_2$ be a 2-bounded set in $X \times Y$ and $\{(a_n, b_n)\}$ a sequence in $\mathbf{S}_{(W_1+M_1)\times(W_2+M_2)}(S_1\times S_2)$. Then by lemma 2.3, $\{(a_n+M_1,b_n+M_2)\}$ is a sequence in

$$\mathbf{S}_{\frac{W_1+M_1}{M_1} \times \frac{W_2+M_2}{M_2}} (\frac{S_1}{M_1} \times \frac{S_2}{M_2}) = \mathbf{S}_{\frac{W_1}{M_1} \times \frac{W_2}{M_2}} (\frac{S_1}{M_1} \times \frac{S_2}{M_2}).$$

Since $\mathbf{S}_{\frac{W_1}{M_1} \times \frac{W_2}{M_2}}(\frac{S_1}{M_1} \times \frac{S_2}{M_2})$ is weakly compact, there exists a subsequence $\{(a_{n_k} + M_1, b_{n_k} + M_2)\}$ of $\{(a_n + M_1, b_n + M_2)\}$ such that $\{(a_{n_k} + M_1, b_{n_k} + M_2)\}$ 2-convergence weakly to an element $(a_0 + M_1, b_0 + M_2) \in \mathbf{S}_{\frac{W_1}{M_1} \times \frac{W_2}{M_2}}(\frac{S_1}{M_1} \times \frac{S_2}{M_2})$. But since $M_1 \times M_2$ is a 2-proximinal, $(a_0 + m_{01}, b_0 + m_{02}) \in \mathbf{S}_{(W_1 + M_1) \times (W_2 + M_2)}(S_1 \times S_2)$, for some $(m_{01}, m_{02}) \in M_1 \times M_2$. But for every $f \in (X \times Y)^*$ we have $T_f \in (\frac{X}{M_1} \times \frac{Y}{M})^*$. Therefore,

$$f(a_{n_k}, b_{n_k}) = T_f(a_{n_k} + M_1, b_{n_k} + M_2) \to T_f(a_0 + m_{01} + M_1, b_0 + m_{02} + M_2)$$

= $f(a_0 + m_{01}, b_0 + m_{02}).$

Hence, $\{(a_{n_k}, b_{n_k})\}$ 2-convergence weakly to $(a_0+m_{01}, b_0+m_{02}) \in \mathbf{S}_{(W_1+M_1)\times(W_2+M_2)}(S_1 \times S_2)$. Thus, $\mathbf{S}_{(W_1+M_1)\times(W_2+M_2)}(S_1 \times S_2)$ is weakly compact and hence (W_1+M_1, W_2+M_2) is simultaneous 2-weakly-Chebyshev subspace of $X \times Y$.

 $(ii) \Rightarrow (i)$ Let $S_1 \times S_2$ be an arbitrary 2-bounded set in $X \times Y$ and $\{(w_{1n} + M_1, w_{2n} + M_2)\}$ a sequence in $\mathbf{S}_{\frac{W_1}{M_1} \times \frac{W_2}{M_2}}(\frac{S_1}{M_1} \times \frac{S_2}{M_2})$. Since $M_1 \times M_2$ is 2-proximinal and $(S_1 - w_{1n}, S_2 - w_{2n})$ is a 2-bounded set in $X \times Y$ for all $n \geq 1$, there exists $(m_{1n}, m_{2n}) \in \mathbf{S}_{M_1 \times M_2}(S_1 - w_{1n}, S_2 - w_{2n})$ for all $n \geq 1$. But by Lemmas 2.1 and 2.2, we have

$$\sup_{(s_1,s_2)\in S_1\times S_2} \|s_1 - w_{1n} - m_{1n}, s_2 - w_{2n} - m_{2n}\|$$

$$= \inf_{(m_1,m_2)\in M_1\times M_2} \sup_{(s_1,s_2)\in S_1\times S_2} \|s_1 - w_{1n} - m_1, s_2 - w_{2n} - m_2\|$$

$$= \sup_{(s_1,s_2)\in S_1\times S_2} \inf_{(m_1,m_2)\in M_1\times M_2} \|s_1 - w_{1n} - m_1, s_2 - w_{2n} - m_2\|$$

$$= \sup_{(s_1,s_2)\in S_1\times S_2} \|s_1 - w_{1n} + M_1, s_2 - w_{2n} + M_2\|$$

$$\leq d\left(\frac{S_1}{M_1} \times \frac{S_2}{M_2}, \frac{W_1}{M_1} \times \frac{W_2}{M_2}\right)$$

$$\leq d(S_1 \times S_2, (W_1 + M_1) \times (W_2 + M_2)).$$

Therefore $\{(w_{1n} + m_{1n}, w_{2n} + m_{2n})\}$ is a sequence in $\mathbf{S}_{(W_1 + M_1) \times (W_2 + M_2)}(S_1 \times S_2)$. Since $\mathbf{S}_{(W_1 + M_1) \times (W_2 + M_2)}(S_1 \times S_2)$ is weakly compact, there exists a subsequence $\{(w_{1n_k} + m_{1n_k}, w_{2n_k} + m_{2n_k})\}$ of $\{(w_{1n} + m_{1n}, w_{2n} + m_{2n})\}$ such that $\{(w_{1n_k} + m_{1n_k}, w_{2n_k} + m_{2n_k})\}$ 2-convergence weakly to an element

$$(a_0, b_0) \in \mathbf{S}_{(W_1 + M_1) \times (W_2 + M_2)}(S_1 \times S_2).$$

By corollary 2.5, $(a_0 + M_1, b_0 + M_2)$ is an element of $\mathbf{S}_{\frac{W_1 + M_1}{M_1} \times \frac{W_2 + M_2}{M_2}} (\frac{S_1}{M_1} \times \frac{S_2}{M_2}) = \mathbf{S}_{\frac{W_1}{M_1} \times \frac{W_2}{M_2}} (\frac{S_1}{M_1} \times \frac{S_2}{M_2})$. Note that for every $f \in (\frac{X}{M_1} \times \frac{Y}{M})^*$ we have

$$f(w_{1n_k} + M_1, w_{2n_k} + M_2) = f(w_{1n_k} + m_{1n_k} + M_1, w_{2n_k} + m_{2n_k} + M_2)$$

= $f \circ \pi(w_{1n_k} + m_{1n_k}, w_{2n_k} + m_{2n_k}) \to f \circ \pi(a_0, b_0) = f(a_0 + M_1, b_0 + M_2).$

It follows that $\{(w_{1n_k}+M_1,w_{2n_k}+M_2)\}$ 2-convergence weakly to $(w_{01}+M_1,w_{02}+M_2)$. Hence, $\mathbf{S}_{\frac{W_1}{M_1}\times\frac{W_2}{M_2}}(\frac{S_1}{M_1}\times\frac{S_2}{M_2})$ is weakly compact subset of $\frac{X}{M_1}\times\frac{Y}{M_2}$. Therefore, $\frac{W_1}{M_1} \times \frac{W_2}{M_2}$ is 2-simultaneous weakly-Chebyshev subspace of $\frac{X}{M_1} \times \frac{Y}{M_2}$.

Corollary 2.10. Let $M_1 \times M_2$ and $W_1 \times W_2$ are subspaces of generalized 2normed linear space $X \times Y$ such that $M_1 \times M_2$ is finite dimensional and 2-proximinal, $W_1 \times W_2$ is 2-simultaneous proximinal and $M_1 \times M_2 \subseteq W_1 \times W_2$. Then the following are equivalent.

- (i) $\frac{W_1}{M_1} \times \frac{W_2}{M_2}$ is 2-simultaneous weakly-Chebyshev subspace of $\frac{X}{M_1} \times \frac{Y}{M_2}$. (ii) $W_1 \times W_2$ is 2-simultaneous weakly-Chebyshev subspace of $X \times Y$.

Conclusions

In this study, we develop 2-simultaneous quasi-Chebyshev and 2-simultaneous weakly-Chebyshev subspaces in generalized 2-normed spaces and investigate the conditions under which these subspaces are transmitted to and from quotient spaces. Future study on the concepts of 2-quasi cochebyshev, 2-weakly cochebyshev, $(2,\varepsilon)$ quasi chebyshev, $(2,\varepsilon)$ -weakly chebyshev, 2-strong quasi chebyshev and 2-strong weaklychebyshev in quotient generalized 2-normed spaces is suggested.

Acknowledgment

The authors are thankful to the referees for their valuable comments and suggestions leading to improvement of the paper.

References

- [1] M. Abrishami Moghaddam, Some results on 2-best coapproximation in quotient generalized 2-normed spaces, Asia Pac. J. Math., 1(1) (2014), 37-43.
- [2] M. Abrishami Moghaddam and T. Sistani, Best approximation in quotient generalized 2normed spaces, Journal. Appl. Sci., 11(16) (2011), 3039-3043.
- [3] M. Abrishami-Moghaddam and T. Sistani, On Pseudo-Chebyshev subspaces in quotient generalized 2-normed spaces, U.P.B Sci. Bull. Series A, 77(3) (2015), 123-130.
- [4] M. Acikgoz, ε-approximation in generalized 2-normed spaces, Mat. Vesnik, **61**(2) (2009), 159– 163.
- [5] H. Alizadeh, Sh. Rezapour, and S. M. Vaezpour, On ε -simultaneous approximation in quotient spaces, Aust. J. Math. Anal. Appl., 5(2) (2009), 1–7.

- [6] H. Alizadeh, Sh. Rezapour, and S. M. Vaezpour, On simultaneous weakly-Chebyshev subspaces, Anal. Theory Appl., 27(2) (2011), 117-124.
- [7] Y. J. Cho, P. C. S. Lin, S. S. Kim and A. Misiak, Theory of 2-inner product spaces, New York: Nova Science Publishes, Inc, 2001.
- [8] R. W. Freese and Y. J. Cho, Geometry of Linear 2-Normed Space, Nova Science Publishers, Hauppage, NY, USA., 2001.
- [9] S. Gähler, Lineare 2-normierte Räume, Math. Nachr., 28 (1964), 1-43.
- [10] S. Gupta and T. D. Narang, Best coapproximation in quotient spaces, Iran. J. Sci. Inf., 14(1) (2019), 13-20.
- [11] M. Iranmanesh and H. Mohebi, On best simultaneouse approximation in quotient spaces, Anal. Theory Appl., 23(1) (2007), 35-49.
- [12] Z. Lewandowska, *Linear operators on generalized 2-normed spaces*, Bull. Math. Soc. Sci. Math. Roumanie, (N.S.), **42**(4) (1999), 353-368.
- [13] Z. Lewandowska, *Generalized 2-normed spaces*, Supskie Space Matemayczno Fizyczne, **1** (2001), 33-40.
- [14] Z. Lewandowska, On 2-normed sets, Glas. Mat. Ser. III, 38(1) (2003), 99-110.
- [15] Z. Lewandowska, Banach-Steinhaus theorems for bounded linear operators with values in a generalized 2-normed space, Glas. Mat. Ser. III, 38(2) (2003), 329-340.
- [16] Z. Lewandowska, Bounded 2-linear operators on 2-normed sets, Glas. Mat. Ser. III, **39**(2) (2004), 301-312.
- [17] Z. Lewandowska, M. S. Moslehian, A. S. Moghaddam, *Hahan-Banach theorem in generalized* 2-normed sets, Comm. Math. Anal., **1**(2) (2006), 109-113.
- [18] S. M. Mousav Shams Abad, H. Mazaheri, and M. A. Dehghan, 2-farthest ortogonality in Generalized 2-Normed Space, J. Indones. Math. Soc., 24(1) (2018), 71-78.
- [19] T. D. Narang and S. Gupta, Best simultaneous approximation in quotient spaces, Appl. Anal. Biolog. Phys. Sci.: ICMBAA, Aligarh, India, June 2015, 186 (2016), 339-349.
- [20] Sh. Rezapour, 2-proximinality in generalized 2-normed spaces, South Asian Bull. Math., 33 (2009), 109-113.
- [21] Sh. Rezapour, 1-type pseudo-Chebyshev subspaces in generalized 2-normed spaces, Aust. J. Math. Anal. Appl. 4(1) (2007), 1-7.
- [22] Sh. Rezapour and I. Kupka, 1-type Lipschitz selections in generalized 2-normed spaces, Anal. Theory Appl., 24(3) (2008), 205-210.

DEPARTMENT OF MATHEMATICS, BIRJAND BRANCH, ISLAMIC AZAD UNIVERSITY, BIRJAND, IRAN

Email address: m.abrishami.m@gmail.com,

Received: April 2023 Accepted: July 2023