# Characterization of uniformly asymptotic $S$-Toeplitz and $S$-Hankel operators 

M. Salehi Sarvestani* and M.Amini


#### Abstract

In this paper, we show that a shift operator on a separable Hilbert space with infinite multiplicity is strongly approximated by shift operators with finite multiplicities. Moreover, for an arbitrary shift operator $S$, we introduce the notion of an (asymptotic) $S$-Hankel operator and study its relation to the class of (asymptotic) $S$-Toeplitz operators.


## 1. Introduction

Throughout this paper, the Hilbert space $\mathcal{H}$ is separable infinite dimensional, often identified with the space $l^{2}$ of square summable sequences, with the canonical basis is $\left\{e_{n}\right\}_{n=0}^{\infty}$. The spaces of all bounded linear operators and all compact operators on $\mathcal{H}$ are denoted by $B(\mathcal{H})$ and $K(\mathcal{H})$, respectively. The Hardy space $\mathcal{H}^{2}=\mathcal{H}^{2}(\mathbb{D})$ is the collection of all analytic function $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ on the open unit disk $\mathbb{D}$ satisfying the norm condition

$$
\|f\|^{2}=\sum_{n=0}^{\infty}\left|a_{n}\right|^{2}<\infty
$$

An isometric operator $S$ on a Hilbert space $\mathcal{H}$ is called a unilateral forward shift (briefly a shift) if $\left\{S^{* n}\right\}$ tends strongly to 0 . The dimension of the Hilbert space $\mathcal{H} \ominus S \mathcal{H}$ is called the multiplicity of S . It is well known that the condition $S^{* n} \rightarrow 0$ strongly is equivalent to the equality $\cap_{n=0}^{\infty} S^{n}(\mathcal{H})=\{0\}$. The adjoint $S^{*}$ of a shift

[^0]will be referred to as a backward shift. Let $\mathcal{H}$ be $l^{2}$ endowed with the canonical basis $\left\{e_{n}\right\}_{n=0}^{\infty}$. One can easily check the linear operator $U$ determined by the equations
$$
U e_{n}=e_{n+1} \quad n=0,1,2, \ldots
$$
is a shift of multiplicity 1 that is called the unilateral shift operator. The adjoint $U^{*}$ is uniquely determined by the equations
\[

$$
\begin{gathered}
U^{*} e_{0}=0 \\
U^{*} e_{n}=e_{n-1} \quad n=1,2,3, \ldots
\end{gathered}
$$
\]

The unilateral shift on the Hardy space is the multiplication operator $M_{z}$ given by $M_{z} f(z)=z f(z)$ for $f \in \mathcal{H}^{2}$. A Toeplitz operator on $\mathcal{H}$ is an operator whose matrix has constant diagonals, or equivalently an operator $T$ satisfying $U^{*} T U=T$. Similarly, a Hankel operator is one whose matrix representation has constant antidiagonals, or equivalently an operator $H$ satisfying $U^{*} H=H U$.

Barria and Halmos in [2] introduced the notion of asymptotic Toeplitz operators in strong operator topology, extended by Feintuch in $[3,4]$ to other topologies on $B(\mathcal{H})$. An operator $A$ is called uniformly (strongly, weakly) asymptotic Toeplitz if the sequence $\left\{U^{* n} A U^{n}\right\}$ is uniformly (strongly, weakly) convergent in $B(\mathcal{H})$. The commutator ideal of the Toeplitz algebra (the $C^{*}$-algebra generated by the set of all Toeplitz operators) is characterized in [2] using strongly asymptotic Toeplitz operators: an operator $T$ in the Toeplitz algebra belongs to commutator ideal of the Toeplitz algebra if and only if the sequence $\left\{U^{* n} T U^{n}\right\}$ converges strongly to zero. Feintuch also studies asymptotic Hankel operators in some different operator topologies. An operator $B$ is uniformly (strongly, weakly) asymptotic Hankel if the sequence $\left\{J_{n} B U^{n+1}\right\}$ converges uniformly (strongly, weakly), where $J_{n}$ is the permutation operator of order $n$,

$$
J_{n} e_{i}=\left\{\begin{array}{cl}
e_{n-i} & , 0 \leq i \leq n \\
0 & \text { otherwise }
\end{array}\right.
$$

Feintuch characterized these operators and found their relation with asymptotic Toeplitz operators in $[3,4]$. In Section 2, we define asymptotic Toepliz and Hankel operators with respect to an arbitrary shift operator $S$ and give characterizations of these operators.

## 2. Asymptotic $S$-Toeplitz and $S$-Hankel operators

Let $S$ be a shift operator in $B(\mathcal{H})$. If $\mathcal{K}=\operatorname{ker} S^{*}$ and $B=\left\{\zeta_{i}\right\}_{i \in \Lambda}$ is an orthonormal basis of $\mathcal{K}$ then by the Wold decomposition (see Chapter 1 of [7]) $\mathcal{H}=\bigoplus_{j=0}^{\infty} S^{j} \mathcal{K}$ with the orthonormal basis $\left\{S^{j} \zeta_{i}: j \geq 0, i \in \Lambda\right\}$ and each $f \in \mathcal{H}$ has a unique representation $f=\sum_{j=0}^{\infty} S^{j} k_{j}$ and $\|f\|^{2}=\sum_{j=0}^{\infty}\left\|k_{j}\right\|^{2}$, where $k_{j}=P_{0} S^{* j} f$ and $P_{0}=I-S S^{*}$ is the orthogonal projection of $\mathcal{H}$ on $\mathcal{K}$ (see also [6]). The multiplicity of $S$ is the cardinal number of the set $\Lambda$, and the Wold decomposition determines
shift operators, up to unitary equivalence, by their multiplicities (see [7]). A shift operator with finite multiplicity $n$ is unitary equivalent with $U^{n}$, where $U$ is the unilateral shift. Let us start by showing that every shift operator with infinite multiplicity is strongly approximated by a sequence of shift operators with finite multiplicities.

Proposition 2.1. Let $S$ be a shift operator on $\mathcal{H}$ with infinite multiplicity. Then there are shift operators $S_{n}$ with multiplicity $n$, converging to $S$ in strong* topology.

Proof. Define the shift operator $V$ by


Then $V$ is a shift operator with infinite multiplicity, indeed the first column of the above diagram is the basis of $\mathcal{K}=\operatorname{ker} V^{*}$ and $\bigcap_{n=0}^{\infty} V^{n} \mathcal{K}=\{0\}$. Define the shift operators $V_{n}$ by


Each $V_{n}$ is a shift operator with finite multiplicity $n$. To show that $\left\{V_{n}\right\}_{n=1}^{\infty}$ converges strongly to $V$, consider $f=\sum_{i=0}^{\infty} \lambda_{i} e_{i}$ in $\mathcal{H}$ and $\varepsilon>0$, then there is a positive integer $N$ such that $\sum_{i=n+1}^{\infty}\left|\lambda_{i}\right|^{2}<\frac{\varepsilon}{2}$, for $n \geq N$, that is,

$$
\left\|V_{n} f-V f\right\|=\left\|\left(V_{n}-V\right)\left(\sum_{i=n+1}^{\infty} \lambda_{i} e_{i}\right)\right\|<\varepsilon
$$

Now if $S$ is any shift operator (with infinite multiplicity), $S=a^{*} V a$, for some unitary operator $a$. Therefore, $\left\{a^{*} V_{n} a\right\}_{n=1}^{\infty}$ converges strongly to $S$, and each $S_{n}=$ $a^{*} V_{n} a$ is a shift operator of finite multiplicity. Similarly, $\left\{S_{n}^{*}\right\}_{n=1}^{\infty}$ converges strongly to $S^{*}$.

Throughout the rest of the paper, $S$ is a shift operator on $\mathcal{H}$. Let $\mathcal{K}$ be the kernel of $S^{*}$ and $P_{0}=I-S^{*} S$ be the projection onto $\mathcal{K}$. Every operator $A \in B(\mathcal{H})$ has a matrix representation on $\mathcal{K}$, namely, $A \sim\left[A_{i j}\right]_{i, j=0}^{\infty}$, where $A_{i j}=P_{0} S^{* i} A S^{j} P_{0}$, for $i, j \geq 0[7]$. An operator $T \in B(\mathcal{H})$ is $S$-Toeplitz if $S^{*} T S=T$. By Theorem $C$ in section 3.2 of $[\mathbf{7}], T \in B(\mathcal{H})$ is $S$-Toeplitz if and only if its matrix representation has the following form

$$
\left[T_{i j}\right]_{i, j=0}^{\infty}=\left[T_{i-j}\right]_{i, j=0}^{\infty}=\left[\begin{array}{cccc}
T_{0} & T_{-1} & T_{-2} & \cdots  \tag{1}\\
T_{1} & T_{0} & T_{-1} & \cdots \\
T_{2} & T_{1} & T_{0} & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

where

$$
T_{j}= \begin{cases}\left.P_{0} S^{* j} T P_{0}\right|_{\mathcal{K}}, & j \geq 0 \\ \left.P_{0} T S^{|j|} P_{0}\right|_{\mathcal{K}}, & j<0\end{cases}
$$

A matrix of the form (1) is called a $S$-Toeplitz matrix. Then the transpose $T^{t}$ of $T$ is $S$-Toeplitz with matrix representation

$$
\left[T_{i j}^{t}\right]_{i, j=0}^{\infty}=\left[\begin{array}{cccc}
T_{0} & T_{1} & T_{2} & \cdots \\
T_{-1} & T_{0} & T_{1} & \cdots \\
T_{-2} & T_{-1} & T_{0} & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

The next result extends the well known fact that non-zero Toeplitz operators are never compact.

Proposition 2.2. The non-zero $S$-Toeplitz operators are not compact.
Proof. If $K$ is compact and $S^{* n} K S^{n}=K, n=1,2,3, \ldots$, then for an arbitrary vector $v$ of the form $v=S^{j} x$, where $j$ is a non-negative integer and $x$ is in $\mathcal{K}=\operatorname{ker} S^{*}$, one can see that $K v=0$ and hence $K=0$, since the vectors of that form span the whole space. To see $K v=0$, note that the sequence $\left\{S^{n} v\right\}$ tends weakly to
zero, since, by definition, $\left\{S^{* n}\right\}$ converges strongly to 0 . Hence $\left\{K S^{n} v\right\}$ is norm convergent to 0 , for which reason, one can write

$$
\|K v\|=\left\|S^{* n} K S^{n} V\right\| \leq\left\|K S^{n} v\right\| \rightarrow 0
$$

and the proof is over.
An operator $H \in B(\mathcal{H})$ is called $S$-Hankel if $S^{*} H=H S$. In this case, $S^{* k} H=$ $H S^{k}$, for each positive integer $k$. The matrix representation of $S$-Hankel operators are as follows.

Proposition 2.3. An operator $H \in B(\mathcal{H})$ is $S$-Hankel if and only if

$$
\left[H_{i j}\right]_{i, j=0}^{\infty}=\left[H_{-(i+j+1)}\right]_{i, j=0}^{\infty}=\left[\begin{array}{cccc}
H_{-1} & H_{-2} & H_{-3} & \cdots  \tag{2}\\
H_{-2} & H_{-3} & & \cdots \\
H_{-3} & & \ddots & \\
\vdots & \vdots & &
\end{array}\right]
$$

where $H_{l}=\left.P_{0} H S^{-(l+1)} P_{0}\right|_{\mathcal{K}}$ for $l<0$.
Proof. Let $H$ be a Hankel operator and $H \sim\left[H_{i j}\right]_{i, j=0}^{\infty}$. Then

$$
H_{i j}=P_{0} S^{* i} H S^{j} P_{0}=P_{0} H S^{i} S^{j} P_{0}=P_{0} H S^{i+j} P_{0}
$$

and we may put $H_{-(i+j+1)}=H_{i j}$. Conversely, let the matrix representation of $H \in B(\mathcal{H})$ is of the form (2) and let $\left[A_{i j}\right]$ and $\left[B_{i j}\right]$ be the matrices of $S^{*} H$ and $H S$. Then

$$
A_{i j}=P_{0} S^{* i} S^{*} H S^{j} P_{0}=P_{0} S^{*(i+1)} H S^{j} P_{0}=H_{-(i+j+2)},
$$

and

$$
B_{i j}=P_{0} S^{* i} H S S^{j} P_{0}=P_{0} S^{* i} H S^{j+1} P_{0}=H_{-(i+j+2)}
$$

Hence $A_{i j}=B_{i j}$, that is, $S^{*} H=S H$.
A matrix of the form (2) is called a $S$-Hankel matrix. Define the operators $J_{n}$ on $\mathcal{K} \oplus S \mathcal{K} \oplus \cdots \oplus S^{n} \mathcal{K}$ by $J_{n}\left(S^{m} \zeta_{i}\right)=S^{n-m} \zeta_{i}$, for $0 \leq m \leq n$ and $i \in \Lambda$. Then $J_{n}$ extends by zero on $\mathcal{H}$, and is called the $S$-permutation operator of order $n$. A simple computation shows that $J_{n}^{*}=J_{n}, J_{n}^{2}=P_{n},\left\|J_{n}\right\| \leq 1$ and $J_{n}=J_{n} P_{n}=P_{n} J_{n}$, where $P_{n}$ is the projection onto $\mathcal{K} \oplus S \mathcal{K} \oplus \cdots \oplus S^{n} \mathcal{K}$.

Definition 2.1. An operator $A$ is weak (strong, uniform) asymptotic $S$-Toeplitz ( $S$-Hankel, respectively) if the sequence $\left\{S^{* n} A S^{n}\right\}$ (the sequence $\left\{J_{n} A S^{n+1}\right\}$, respectively) converges in the weak (strong, uniform) operator topology. Note that if $\left\{S^{* n} A S^{n}\right\}$ converges in any of these topologies, the limit is $S$-Toeplitz. A similar statement is true for $S$-Hankel operators.

Lemma 2.4. If $A \in B(\mathcal{H})$ and the sequence $\left\{J_{n} A S^{n+1}\right\}$ converges weakly, then the limit is $S$-Hankle.

Proof. If $\left\{J_{n} A S^{n+1}\right\}$ converges to $B$ in weak operator topology then

$$
\begin{aligned}
\left\langle S^{*} B S^{k} \zeta_{i}, S^{l} \zeta_{j}\right\rangle & =\left\langle B S^{k} \zeta_{i}, S^{l+1} \zeta_{j}\right\rangle=\lim _{n}\left\langle J_{n} A S^{n+1}\left(S^{k} \zeta_{i}\right), S^{l+1} \zeta_{j}\right\rangle \\
& =\lim _{n}\left\langle A S^{n+k+1} \zeta_{i}, J_{n} S^{l+1} \zeta_{j}\right\rangle,
\end{aligned}
$$

for $k, l \geq 0$ and $i, j \in \Lambda$. By definition, for $n \geq l+1, J_{n} S^{l+1} \zeta_{j}=S^{n-(l+1)} \zeta_{j}$. Thus, after an appropriate relabeling,

$$
\left\langle S^{*} B S^{k} \zeta_{i}, S^{l} \zeta_{j}\right\rangle=\lim _{m}\left\langle A S^{m} \zeta_{i}, S^{m-(k+l)-2} \zeta_{j}\right\rangle
$$

Similarly,

$$
\left\langle B S\left(S^{k} \zeta_{i}\right), S^{l} \zeta_{j}\right\rangle=\lim _{m}\left\langle A S^{m} \zeta_{i}, S^{m-(k+l)-2} \zeta_{j}\right\rangle
$$

Therefore, $S^{*} B=B S$.
Now let $T$ be a $S$-Toeplitz operator with matrix representation (1). Then,

$$
\begin{equation*}
J_{n} T S^{n+1}=P_{n} H, \tag{3}
\end{equation*}
$$

where $H$ is a $S$-Hankel operator with matrix

$$
\left[\begin{array}{cccc}
T_{-1} & T_{-2} & T_{-3} & \cdots \\
T_{-2} & T_{-3} & & \cdots \\
T_{-3} & & \ddots & \\
\vdots & \vdots & &
\end{array}\right]
$$

In this case, we write $H=H(T)$. For each $S$-Hankel operator $H$, we have $H=H(T)$, for some $S$-Toeplitz operator $T$. In particular, by (3), each $S$-Toeplitz operator is a strongly (weakly) asymptotic $S$-Hankel operator. The norm closed algebra generated by all $S$-Teplitz and $S$-Hankel operators is called the $S$-Hankel algebra. We show the $S$-Hankel algebra is contained in both classes of the strongly asymptotic $S$-Toeplitz operators and strongly asymptotic $S$-Hankel operators. The next lemma is a direct consequence of definitions.

Lemma 2.5. The set of strongly asymptotic $S$-Toeplitz operators is norm closed. The same is true for the class of strongly asymptotic S-Hankel operators.

In general, the multiplication of two $S$-Toeplitz operators is not $S$-Toeplitz. However, we have the following useful formulas.

Lemma 2.6. (i) If $R$ and $T$ are $S$-Toeplitz operators then $T R=A-H\left(T^{t}\right) H(R)$ and $H(T) R=B-T^{t} H(R)$, for a $S$-Toeplitz operator $A$ and a $S$-Hankel operator $B$.
(ii) If $T_{1}, T_{2}, \cdots, T_{n}$ are $S$-Toeplitz operators then

$$
T_{n} T_{n-1} \cdots T_{1}=T+A_{1} H_{1}+\cdots+A_{n-1} H_{n-1}
$$

where $T$ is a $S$-Toeplitz operator, $H_{i}$ 's are $S$-Hanke and $A_{i}$ 's are in $B(\mathcal{H})$.

Proof. For $(i)$, let the matrix representations of $R$ and $T$ be

$$
R \sim\left[\begin{array}{cccc}
R_{0} & R_{-1} & R_{-2} & \cdots \\
R_{1} & R_{0} & R_{-1} & \cdots \\
R_{2} & R_{1} & R_{0} & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right], T \sim\left[\begin{array}{cccc}
T_{0} & T_{-1} & T_{-2} & \cdots \\
T_{1} & T_{0} & T_{-1} & \cdots \\
T_{2} & T_{1} & T_{0} & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

If $A=T R+H\left(T^{t}\right) H(R)$ then the matrix representation of $A$ is of the form

$$
\begin{gathered}
{\left[A_{i j}\right]_{i, j=0}^{\infty}=\left[\begin{array}{cccc}
T_{0} & T_{-1} & T_{-2} & \cdots \\
T_{1} & T_{0} & T_{-1} & \cdots \\
T_{2} & T_{1} & T_{0} & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right]\left[\begin{array}{cccc}
R_{0} & R_{-1} & R_{-2} & \cdots \\
R_{1} & R_{0} & R_{-1} & \cdots \\
R_{2} & R_{1} & R_{0} & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right]} \\
+\left[\begin{array}{cccc}
T_{1} & T_{2} & T_{3} & \cdots \\
T_{2} & T_{3} & & \cdots \\
T_{3} & & \ddots & \\
\vdots & \vdots & &
\end{array}\right]\left[\begin{array}{cccc}
R_{-1} & R_{-2} & R_{-3} & \cdots \\
R_{-2} & R_{-3} & & \cdots \\
R_{-3} & & \ddots & \\
\vdots & \vdots & &
\end{array}\right],
\end{gathered}
$$

where $A_{i j}=\sum_{k=0}^{\infty} T_{i-k} R_{k-j}+\sum_{k=0}^{\infty} T_{i+k+1} R_{-(j+k+1)}$. Thus

$$
\begin{aligned}
A_{(i+1)(j+1)} & =\sum_{k=0}^{\infty} T_{i-k+1} R_{k-j-1}+\sum_{k=0}^{\infty} T_{i+k+2} R_{-(j+k+2)} \\
& =\sum_{k=0}^{\infty} T_{i-k} R_{k-j}+\left(T_{i+1} R_{-(j+1)}+\sum_{k=0}^{\infty} T_{i+k+2} R_{-(j+k+2)}\right) \\
& =\sum_{k=0}^{\infty} T_{i-k} R_{k-j}+\sum_{k=0}^{\infty} T_{i+k+1} R_{-(j+k+1)}=A_{i j} .
\end{aligned}
$$

Thus $A$ is $S$-Toeplitz. Let $B=T^{t} H(R)+H(T) R$, with matrix representation

$$
\begin{gathered}
{\left[B_{i j}\right]_{i, j=0}^{\infty}=\left[\begin{array}{cccc}
T_{0} & T_{1} & T_{2} & \cdots \\
T_{-1} & T_{0} & T_{1} & \cdots \\
T_{-2} & T_{-1} & T_{0} & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right]\left[\begin{array}{cccc}
R_{-1} & R_{-2} & R_{-3} & \cdots \\
R_{-2} & R_{-3} & & \cdots \\
R_{-3} & & \ddots & \\
\vdots & \vdots & &
\end{array}\right]} \\
+\left[\begin{array}{cccc}
T_{-1} & T_{-2} & T_{-3} & \cdots \\
T_{-2} & T_{-3} & & \cdots \\
T_{-3} & & \ddots & \\
\vdots & \vdots & &
\end{array}\right]\left[\begin{array}{cccc}
R_{0} & R_{-1} & R_{-2} & \cdots \\
R_{1} & R_{0} & R_{-1} & \cdots \\
R_{2} & R_{1} & R_{0} & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right],
\end{gathered}
$$

where $B_{i j}=\sum_{k=0}^{\infty} T_{-i+k} R_{-j+k-1}+\sum_{k=0}^{\infty} T_{-(i+k+1)} R_{-j+k}$. Then

$$
\begin{aligned}
B_{(i+1)(j-1)} & =\sum_{k=0}^{\infty} T_{-i+k-1} R_{-(j+k)}+\sum_{k=0}^{\infty} T_{-(i+k+2)} R_{-j+k+1} \\
& =\sum_{k=0}^{\infty} T_{-i+k} R_{-j+k-1}+\left(T_{-(i+1)} R_{-j}+\sum_{k=0}^{\infty} T_{-(i+k+2)} R_{-j+k+1}\right) \\
& =\sum_{k=0}^{\infty} T_{-i+k} R_{-j+k-1}+\sum_{k=0}^{\infty} T_{-(i+k+1)} R_{-j+k}=B_{i j} .
\end{aligned}
$$

Then the matrix of $B$ has constant anti-diagonals and $B$ is $S$-Hankel.
Part (ii) is proved by induction. For $n=1$, the assertion is obvious. Assume that

$$
T_{k-1} T_{k-2} \cdots T_{1}=T+A_{1} H_{1}+\cdots+A_{k-2} H_{k-2}
$$

with $T S$-Toeplitz and $H_{i}$ 's $S$-Hankel, then, by $(i), T_{k} T=T^{\prime}+B H^{\prime}$, for some $B$, $S$-Toeplitz operator $T^{\prime}$ and $S$-Hankel operator $H^{\prime}$. Therefore

$$
\begin{aligned}
T_{k} T_{k-1} \cdots T_{1} & =T_{k} T+T_{k} A_{1} H_{1}+\cdots+T_{k} A_{k-2} H_{k-2} \\
& =T^{\prime}+B H^{\prime}+T_{k} A_{1} H_{1}+\cdots+T_{k} A_{k-2} H_{k-2}
\end{aligned}
$$

as required.
Theorem 2.7. The $S$-Hankel algebra is contained in the class of strongly asymptotic $S$-Toplitz operators.

Proof. Let $H$ and $B$ be bounded operators with $H S$-Hankel. Then $B H$ is strongly asymptotic $S$-Toeplitz, since $S^{* n} B H S^{n}=S^{* n} B S^{* n} H \rightarrow 0$ in strong operator topology. Therefore, a multiplication of finitely many $S$-Toeplitz and $S$-Hankel operators is strongly asymptotic $S$-Toeplitz, by Lemma 2.6. The result follows now from Lemma 2.5.

Theorem 2.8. Every element of the $S$-Hankel algebra is a strongly asymptotic S-Hankel operator.

Proof. If $H$ is $S$-Hankel, each operator of the form $B H$ is strongly asymptotic $S$-Hankel, since

$$
J_{n} B H S^{n+1}=J_{n} B S^{* n+1} H \rightarrow 0
$$

in the strong operator topology. Also every $S$-Toeplitz operator is strongly asymptotic $S$-Hankel. Now, as in the proof of Theorem 2.7, the result follows from Lemmas 2.5 and 2.6.

In [3] uniformly asymptotic Toeplitz operators are characterized as operators of the form $T+K$, where $T$ is Toeplitz and $K$ is compact. If $S$ is a shift operator with finite multiplicity, Matache in [5] uses the same characterization for uniformly asymptotic $S$-Toeplitz operators. Here we drop the assumption on multiplicity.

Proposition 2.9. Every uniformly asymptotic $S$-Toeplitz operator $A$ is of the form $A=T+C$, where $T$ is $S$-Toeplitz and $C$ is an operator such that $\|(I-$ $\left.P_{n}\right) C\left(I-P_{n}\right) \| \rightarrow 0$.

Proof. If $T$ is $S$-Toeplitz, since $S^{* n} A S^{n}-T=S^{* n}(A-T) S^{n}$, the sequence $\left\{S^{* n} A S^{n}\right\}$ converges uniformly to $T$ if and only if $\left\|S^{* n}(A-T) S^{n}\right\| \rightarrow 0$. The matrix representation of $S^{* n}(A-T) S^{n}$ is obtained from that of $A-T$ by deleting the $n$ first block-rows and columns. Similarly the matrix of $\left(I-P_{n}\right)(A-T)\left(I-P_{n}\right)$ is obtained from that of $A-T$ by replacing the $n$ first block-rows and columns by zero. Therefore, for each $n$, the operators $S^{* n}(A-T) S^{n}$ and $\left(I-P_{n}\right)(A-T)\left(I-P_{n}\right)$ have the same norm, and the result follows.

If the multiplicity of $S$ is finite, as Matache shows in [5], each uniformly asymptotic $S$-Toeplitz operator $A$ is of the form $A=T+K$ such that $T$ is $S$-Toeplitz and $K$ is compact. Indeed, in this case, $P_{n}$ 's are finite rank projections and

$$
\left(I-P_{n}\right)(A-T)\left(I-P_{n}\right)=A-T-F_{n}
$$

for some finite rank operators $F_{n}$. By the previous Proposition, $\left\{S^{* n} A S^{n}\right\}$ converges uniformly to $T$ if and only if $\left\{F_{n}\right\}$ converges to the compact operator $A-T$. The converse follows from the fact that compact operators are uniformly asymptotic $S$-Toeplitz. Next we characterize those $S$-Toeplitz operators which are uniformly asymptotic $S$-Hankel.

Lemma 2.10. Let $T$ be $S$-Toeplitz and $H=H(T)$. Then $T$ is uniformly asymptotic $S$-Hankel if and only if the sequence $\left\{P_{n}(H)\right\}$ converges uniformly to $H$. When the multiplicity $S$ is finite, $T$ is uniformly asymptotic $S$-Hankel if and only if $H$ is compact.

Proof. The first part follows from (3). If the multiplicity of $S$ is finite, the sequence $\left\{P_{n} H\right\}$ converges uniformly to $H$ if and only if $H$ is compact.

For bounded operators $A$ and $B$,

$$
\left\|J_{n} P_{n} A\right\|^{2}=\left\|A^{*} P_{n} J_{n} J_{n} P_{n} A\right\|=\left\|A^{*} P_{n} P_{n} A\right\|=\left\|P_{n} A\right\|^{2},
$$

and since $\left(I-P_{n}\right) S^{n+1}=S^{n+1}$,

$$
\begin{equation*}
\left\|J_{n} B S^{n+1}\right\|=\left\|J_{n} P_{n} B\left(I-P_{n}\right) S^{n+1}\right\|=\left\|P_{n} B\left(I-P_{n}\right)\right\| \tag{4}
\end{equation*}
$$

Therefore, by Lemma 2.10, uniformly asymptotic $S$-Toeplitz operators are not necessarily uniformly asymptotic $S$-Hankel. If the multiplicity of $S$ is finite and $A$ is uniformly asymptotic $S$-Toeplitz, then $A=T+K$, for some $S$-Teplitz operator $T$ and compact operator $K$. Let $A$ be uniformly asymptotic $S$-Hankel. By (4), $\left\|J_{n} K S^{n+1}\right\|=\left\|P_{n} K\left(I-P_{n}\right)\right\| \rightarrow 0$, hence the $S$-Toeplitz operator $T$ must be uniformly asymptotic $S$-Hankel. By Lemma 2.10, $H(T)$ is compact.

Let $\mathcal{K}=\operatorname{ker} S^{*}$ and $P_{n}$ be the finite rank projection onto $\mathcal{K} \oplus S \mathcal{K} \oplus \cdots \oplus S^{n} \mathcal{K}$. An operator $A \in B(\mathcal{H})$ is called quasi-triangular (relative to the sequence $\left\{P_{n}\right\}$ ) if $\left\|P_{n} A\left(I-P_{n}\right)\right\| \rightarrow 0$. The algebra of all quasi-triangular operators is a Banach algebra [1]. If alg $\left\{P_{n}\right\}$ consists of all operators $A \in B(\mathcal{H})$ such that $P_{n} A\left(I-P_{n}\right)=0$, for each $n$, then $\operatorname{alg}\left\{P_{n}\right\}+K(\mathcal{H})$ is the same as the algebra of all quasi-triangular operators [1]. The (weakly closed) algebra alg $\left\{P_{n}\right\}$ contains of all operators with block-lower triangular matrix representation, and it is a nest algebra. When $S$ has finite multiplicity, uniformly asymptotic $S$-Hankel operators are characterized as follows.

Theorem 2.11. Let $S$ has finite multiplicity. Then an operator $A \in B(\mathcal{H})$ is uniformly asymptotic $S$-Hankel if and only if $A=T+R$, where $T$ is a $S$-Toeplitz operator with $H(T)$ compact, and $R \in \operatorname{alg}\left\{P_{n}\right\}+K(\mathcal{H})$.

Proof. The $S$-permutations $J_{n}$ are of finite rank, and if $\left\{J_{n} A S^{n+1}\right\}$ converges uniformly to an operator $H$, then $H$ is compact. Moreover, by Lemma 2.4, $H$ is $S$-Hankel with matrix representation

$$
\left[\begin{array}{cccc}
H_{-1} & H_{-2} & H_{-3} & \cdots \\
H_{-2} & H_{-3} & & \cdots \\
H_{-3} & & \ddots & \\
\vdots & \vdots & &
\end{array}\right]
$$

Let $T$ be the $S$-Toeplitz operator with matrix representation

$$
\left[\begin{array}{cccc}
0 & H_{-1} & H_{-2} & \cdots \\
0 & 0 & H_{-1} & \cdots \\
0 & 0 & 0 & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

Then $J_{n} T S^{n+1}=P_{n} H$, and since $H$ is compact, $\left\{J_{n} T S^{n+1}\right\}$ converges uniformly to $H$. Therefore, $\left\|J_{n}(A-T) S^{n+1}\right\| \rightarrow 0$, since $\left\|J_{n}(A-T) S^{n+1}\right\| \leq \| J_{n} A S^{n+1}-$ $H\|+\| J_{n} T S^{n+1}-H \|$. Hence by (4), $A-T \in \operatorname{alg}\left\{P_{n}\right\}+K(\mathcal{H})$. Conversely, if $A=T+R$ with $T S$-Toeplitz and $H(T)$ compact, and $R \in \operatorname{alg}\left\{P_{n}\right\}+K(\mathcal{H})$, then $\left\{J_{n} T S^{n+1}=P_{n} H\right\}$ converges uniformly to $H, A-T \in \operatorname{alg}\left\{P_{n}\right\}+K(\mathcal{H})$, and $\left\|J_{n} A S^{n+1}-H\right\| \leq\left\|J_{n}(A-T) S^{n+1}\right\|+\left\|J_{n} T S^{n+1}-H\right\|$. Therefore $A$ is uniformly asymptotic $S$-Hankel.

The next result characterizes The block-matrix of weakly asymptotic $S$-Hankel and $S$-Toeplitz operators.

Theorem 2.12. Let $\left.\left[t_{i j}^{k, l}\right]_{i, j \in \Lambda}\right]_{k, l=0}^{\infty}$ be the block-matrix representation of operator $T$ with respect to the basis $\left\{S^{n} \zeta_{i}: n \geq 0, i \in \Lambda\right\}$ of $\mathcal{H}$. Then
(i) $T$ is weakly asymptotic $S$-Hankel if and only if for $i, j \in \Lambda$ and $p \geq 1$ the sequence $\left\{t_{i j}^{m, m+p}\right\}_{m=0}^{\infty}$ converges to some complex number $t_{i j}^{-p}$. In this case, $\left.\left[t_{i j}^{-(k+l+1)}\right]_{i, j \in \Lambda}\right]_{k, l=0}^{\infty}$ is a S-Hankel block-matrix.
(ii) $T$ is weakly asymptotic $S$-Toeplitz if and only if for each integer number $p$ the sequence $\left\{t_{i j}^{m, m+p}\right\}_{m=0}^{\infty}$ converges to some $t_{i j}^{-p}$. In this case, $\left[\left[t_{i j}^{k-l}\right]_{i, j \in \Lambda}\right]_{k, l=0}^{\infty}$ is a S-Toeplitz block-matrix.

Proof. For $(i)$, let $T$ be a weakly asymptotic $S$-Hankel operator. Since

$$
\begin{aligned}
\left\langle J_{n} T S^{n+1}\left(S^{l} \zeta_{j}\right), S^{k} \zeta_{i}\right\rangle & =\left\{\begin{array}{cl}
\left\langle T S^{n+l+1} \zeta_{j}, S^{n-k} \zeta_{i}\right\rangle & , n \geq k \\
0 & , n<k
\end{array}\right. \\
& =\left\{\begin{array}{cl}
t_{i j}^{n-k, n+l+1} & , n \geq k \\
0 & , n<k
\end{array}\right.
\end{aligned}
$$

by the change of indices $n-k=m$ and $k+l+1=p$, the sequence $\left\{t_{i j}^{m, m+p}\right\}_{m=0}^{\infty}$ converges to some complex number $t_{i j}^{-p}$ for $p \geq 1$ and $i, j \in \Lambda$.

For (ii), by assumption,

$$
\left\langle S^{* n} T S^{n}\left(S^{l} \zeta_{j}\right), S^{k} \zeta_{i}\right\rangle=\left\langle T S^{n+l} \zeta_{j}, S^{n+k} \zeta_{i}\right\rangle=t_{i j}^{n+k, n+l} .
$$

and by the change indices $n+k=m$ and $l-k=p$, if $T$ is a weakly asymptotic $S$-Toeplitz, the sequence $\left\{t_{i j}^{m, m+p}\right\}_{m=0}^{\infty}$ converges to some complex number $t_{i j}^{-p}$, for each $p$ and $i, j \in \Lambda$.

Corollary 2.13. Every weakly asymptotic $S$-Toeplitz operator is weakly asymptotic S-Hankel.

## Acknowledgment

The authors would like to thank the referees and Editor in Chief for their comments which improved the paper.

## References

[1] W. Arveson and J. Feldman, A note on invariant sub spaces, Michigan Math. J., 15 (1968), 61-64.
[2] J. Barria and P. R. Halmos, Asymptotic Toeplitz operators, Trans. Amer. Math. Soc., 273 (1982), 621-630.
[3] A. Feintuch, On asymptotic Toeplitz and Hankel operators, The Gohberg anniversary collection, Vol. II (Calgary, AB, 1988), 241-254, Oper. Theory Adv. Appl., 41, Birkhäuser, Basel, 1989.
[4] A. Feintuch, On Hankel operators associated with a class of non-Toeplitz operators, J. Funct. Anal., 94 (1990), 1-13.
[5] V. Matache, S-Toeplitz composition operators, Complex and Harmonic Analysis, DEStech Publ., Lancaster, 2007, pp. 189-204.
[6] H. Radjavi and P. Rosenthal, Invariant Subspaces, Springer-Verlag, New York-Heidelberg, 1973.
[7] M. Rosenblum and J. Rovnyak, Hardy Classes and Operator Theory, Oxford Mathematical Monographs, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1985.

Department of Mathematics, Savadkooh Branch, Islamic Azad University, SavadKOOH, Iran

Email address: m.salehisarvestani@gmail.com
Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Tarbiat Modares, Tehran, Iran

Email address: mamini@modares.ac.ir,


[^0]:    2020 Mathematics Subject Classification. Primary: 47B33; Secondary: 47B32.
    Key words and phrases. Generalized Shift operator, $S$-Toeplitz operator, $S$-Hankel operator, Hardy space.

    * Corresponding author
    

    This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

