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Characterization of uniformly asymptotic

S-Toeplitz and S-Hankel operators

M. Salehi Sarvestani∗ and M.Amini

Abstract. In this paper, we show that a shift operator on a separable Hilbert

space with infinite multiplicity is strongly approximated by shift operators with

finite multiplicities. Moreover, for an arbitrary shift operator S, we introduce the

notion of an (asymptotic) S-Hankel operator and study its relation to the class of

(asymptotic) S-Toeplitz operators.

1. Introduction

Throughout this paper, the Hilbert space H is separable infinite dimensional,

often identified with the space l2 of square summable sequences, with the canon-

ical basis is {en}∞n=0. The spaces of all bounded linear operators and all compact

operators on H are denoted by B(H) and K(H), respectively. The Hardy space

H2 = H2(D) is the collection of all analytic function f(z) =
∑∞

n=0 anz
n on the open

unit disk D satisfying the norm condition

∥f∥2 =
∞∑
n=0

|an|2 < ∞.

An isometric operator S on a Hilbert space H is called a unilateral forward shift

(briefly a shift) if {S∗n} tends strongly to 0. The dimension of the Hilbert space

H⊖ SH is called the multiplicity of S. It is well known that the condition S∗n → 0

strongly is equivalent to the equality ∩∞
n=0S

n(H) = {0}. The adjoint S∗ of a shift
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will be referred to as a backward shift. Let H be l2 endowed with the canonical basis

{en}∞n=0. One can easily check the linear operator U determined by the equations

Uen = en+1 n = 0, 1, 2, . . .

is a shift of multiplicity 1 that is called the unilateral shift operator. The adjoint

U∗ is uniquely determined by the equations

U∗e0 = 0

U∗en = en−1 n = 1, 2, 3, . . . .

The unilateral shift on the Hardy space is the multiplication operator Mz given

by Mzf(z) = zf(z) for f ∈ H2. A Toeplitz operator on H is an operator whose

matrix has constant diagonals, or equivalently an operator T satisfying U∗TU = T .

Similarly, a Hankel operator is one whose matrix representation has constant anti-

diagonals, or equivalently an operator H satisfying U∗H = HU .

Barria and Halmos in [2] introduced the notion of asymptotic Toeplitz operators

in strong operator topology, extended by Feintuch in [3, 4] to other topologies on

B(H). An operator A is called uniformly (strongly, weakly) asymptotic Toeplitz if

the sequence {U∗nAUn} is uniformly (strongly, weakly) convergent in B(H). The

commutator ideal of the Toeplitz algebra (the C∗-algebra generated by the set of

all Toeplitz operators) is characterized in [2] using strongly asymptotic Toeplitz

operators: an operator T in the Toeplitz algebra belongs to commutator ideal of

the Toeplitz algebra if and only if the sequence {U∗nTUn} converges strongly to

zero. Feintuch also studies asymptotic Hankel operators in some different operator

topologies. An operator B is uniformly (strongly, weakly) asymptotic Hankel if

the sequence {JnBUn+1} converges uniformly (strongly, weakly), where Jn is the

permutation operator of order n,

Jnei =

{
en−i , 0 ≤ i ≤ n

0 otherwise.

Feintuch characterized these operators and found their relation with asymptotic

Toeplitz operators in [3, 4]. In Section 2, we define asymptotic Toepliz and Hankel

operators with respect to an arbitrary shift operator S and give characterizations of

these operators.

2. Asymptotic S-Toeplitz and S-Hankel operators

Let S be a shift operator in B(H). If K =kerS∗ and B = {ζi}i∈Λ is an orthonor-

mal basis of K then by the Wold decomposition (see Chapter 1 of [7])H =
⊕∞

j=0 S
jK

with the orthonormal basis {Sjζi : j ≥ 0, i ∈ Λ} and each f ∈ H has a unique

representation f =
∑∞

j=0 S
jkj and ∥f∥2 =

∑∞
j=0 ∥kj∥2, where kj = P0S

∗jf and

P0 = I−SS∗ is the orthogonal projection of H on K (see also [6]). The multiplicity

of S is the cardinal number of the set Λ, and the Wold decomposition determines
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shift operators, up to unitary equivalence, by their multiplicities (see [7]). A shift

operator with finite multiplicity n is unitary equivalent with Un, where U is the

unilateral shift. Let us start by showing that every shift operator with infinite

multiplicity is strongly approximated by a sequence of shift operators with finite

multiplicities.

Proposition 2.1. Let S be a shift operator on H with infinite multiplicity. Then

there are shift operators Sn with multiplicity n, converging to S in strong∗ topology.

Proof. Define the shift operator V by

V: e0 // e1 // e5 // e6 // e14 · · ·

e2 // e4 // e7 // e13
. . .

e3 // e8 // e12
. . .

e9 // e11
. . .

e10
. . .

...

Then V is a shift operator with infinite multiplicity, indeed the first column of

the above diagram is the basis of K = ker V ∗ and
⋂∞

n=0 V
nK = {0}. Define the shift

operators Vn by

V1 : e0 // e1

~~

e5 // e6

~~

e14 · · ·

e2

��

e4

>>

e7

��

e13

>>

. . .

e3

@@

e8

��

e12

@@

. . .

e9

��

e11

@@

. . .

e10

@@

. . .

...

V2: e0 // e1 // e5 // e6 // e14 · · ·

e2 // e4

��

e7 // e13

��

. . .

e3

��

e8

@@

e12

��

. . .

e9

@@

e11

��

. . .

e10
. . .

...

V3 : e0 // e1 // e5 // e6 // e14 · · ·

e2 // e4 // e7 // e13
. . .

e3 // e8

��

e12
. . .

e9

��

e11

@@

. . .

e10

@@

. . .

...
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Each Vn is a shift operator with finite multiplicity n. To show that {Vn}∞n=1

converges strongly to V , consider f =
∑∞

i=0 λiei in H and ε > 0, then there is a

positive integer N such that
∑∞

i=n+1 |λi|2 <
ε

2
, for n ≥ N , that is,

∥Vnf − V f∥ = ∥(Vn − V )(
∞∑

i=n+1

λiei)∥ < ε.

Now if S is any shift operator (with infinite multiplicity), S = a∗V a, for some

unitary operator a. Therefore, {a∗Vna}∞n=1 converges strongly to S, and each Sn =

a∗Vna is a shift operator of finite multiplicity. Similarly, {S∗
n}∞n=1 converges strongly

to S∗. □

Throughout the rest of the paper, S is a shift operator on H. Let K be the

kernel of S∗ and P0 = I −S∗S be the projection onto K. Every operator A ∈ B(H)

has a matrix representation on K, namely, A ∼ [Aij]
∞
i,j=0, where Aij = P0S

∗iASjP0,

for i, j ≥ 0 [7]. An operator T ∈ B(H) is S-Toeplitz if S∗TS = T . By Theorem C

in section 3.2 of [7], T ∈ B(H) is S-Toeplitz if and only if its matrix representation

has the following form

[Tij]
∞
i,j=0 = [Ti−j]

∞
i,j=0 =


T0 T−1 T−2 · · ·
T1 T0 T−1 · · ·
T2 T1 T0 · · ·
...

...
...

. . .

 (1)

where

Tj =

{
P0S

∗jTP0|K, j ≥ 0

P0TS
|j|P0|K, j < 0.

A matrix of the form (1) is called a S-Toeplitz matrix. Then the transpose T t

of T is S-Toeplitz with matrix representation

[T t
ij]

∞
i,j=0 =


T0 T1 T2 · · ·
T−1 T0 T1 · · ·
T−2 T−1 T0 · · ·
...

...
...

. . .

 .

The next result extends the well known fact that non-zero Toeplitz operators are

never compact.

Proposition 2.2. The non-zero S-Toeplitz operators are not compact.

Proof. If K is compact and S∗nKSn = K, n = 1, 2, 3, . . ., then for an arbitrary

vector v of the form v = Sjx, where j is a non-negative integer and x is in K =kerS∗,

one can see that Kv = 0 and hence K = 0, since the vectors of that form span

the whole space. To see Kv = 0, note that the sequence {Snv} tends weakly to
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zero, since, by definition, {S∗n} converges strongly to 0. Hence {KSnv} is norm

convergent to 0, for which reason, one can write

∥Kv∥ = ∥S∗nKSnV ∥ ≤ ∥KSnv∥ → 0

and the proof is over. □

An operator H ∈ B(H) is called S-Hankel if S∗H = HS. In this case, S∗kH =

HSk, for each positive integer k. The matrix representation of S-Hankel operators

are as follows.

Proposition 2.3. An operator H ∈ B(H) is S-Hankel if and only if

[Hij]
∞
i,j=0 = [H−(i+j+1)]

∞
i,j=0 =


H−1 H−2 H−3 · · ·
H−2 H−3 · · ·
H−3

. . .
...

...

 , (2)

where Hl = P0HS−(l+1)P0|K for l < 0.

Proof. Let H be a Hankel operator and H ∼ [Hij]
∞
i,j=0. Then

Hij = P0S
∗iHSjP0 = P0HSiSjP0 = P0HSi+jP0

and we may put H−(i+j+1) = Hij. Conversely, let the matrix representation of

H ∈ B(H) is of the form (2) and let [Aij] and [Bij] be the matrices of S∗H and HS.

Then

Aij = P0S
∗iS∗HSjP0 = P0S

∗(i+1)HSjP0 = H−(i+j+2),

and

Bij = P0S
∗iHSSjP0 = P0S

∗iHSj+1P0 = H−(i+j+2).

Hence Aij = Bij, that is, S
∗H = SH. □

A matrix of the form (2) is called a S-Hankel matrix. Define the operators Jn
on K ⊕ SK ⊕ · · · ⊕ SnK by Jn(S

mζi) = Sn−mζi, for 0 ≤ m ≤ n and i ∈ Λ. Then

Jn extends by zero on H, and is called the S-permutation operator of order n. A

simple computation shows that J∗
n = Jn, J

2
n = Pn, ∥Jn∥ ≤ 1 and Jn = JnPn = PnJn,

where Pn is the projection onto K ⊕ SK ⊕ · · · ⊕ SnK.

Definition 2.1. An operator A is weak (strong, uniform) asymptotic S-Toeplitz

(S-Hankel, respectively) if the sequence {S∗nASn} (the sequence {JnASn+1}, re-
spectively) converges in the weak (strong, uniform) operator topology. Note that if

{S∗nASn} converges in any of these topologies, the limit is S-Toeplitz. A similar

statement is true for S-Hankel operators.

Lemma 2.4. If A ∈ B(H) and the sequence {JnASn+1} converges weakly, then

the limit is S-Hankle.
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Proof. If {JnASn+1} converges to B in weak operator topology then

⟨S∗BSkζi, S
lζj⟩ = ⟨BSkζi, S

l+1ζj⟩ = lim
n
⟨JnASn+1(Skζi), S

l+1ζj⟩

= lim
n
⟨ASn+k+1ζi, JnS

l+1ζj⟩,

for k, l ≥ 0 and i, j ∈ Λ. By definition, for n ≥ l + 1, JnS
l+1ζj = Sn−(l+1)ζj. Thus,

after an appropriate relabeling,

⟨S∗BSkζi, S
lζj⟩ = lim

m
⟨ASmζi, S

m−(k+l)−2ζj⟩.

Similarly,

⟨BS(Skζi), S
lζj⟩ = lim

m
⟨ASmζi, S

m−(k+l)−2ζj⟩.

Therefore, S∗B = BS. □

Now let T be a S-Toeplitz operator with matrix representation (1). Then,

JnTS
n+1 = PnH, (3)

where H is a S-Hankel operator with matrix
T−1 T−2 T−3 · · ·
T−2 T−3 · · ·
T−3

. . .
...

...

 .

In this case, we write H = H(T ). For each S-Hankel operator H, we have

H = H(T ), for some S-Toeplitz operator T . In particular, by (3), each S-Toeplitz

operator is a strongly (weakly) asymptotic S-Hankel operator. The norm closed

algebra generated by all S-Teplitz and S-Hankel operators is called the S-Hankel

algebra. We show the S-Hankel algebra is contained in both classes of the strongly

asymptotic S-Toeplitz operators and strongly asymptotic S-Hankel operators. The

next lemma is a direct consequence of definitions.

Lemma 2.5. The set of strongly asymptotic S-Toeplitz operators is norm closed.

The same is true for the class of strongly asymptotic S-Hankel operators.

In general, the multiplication of two S-Toeplitz operators is not S-Toeplitz.

However, we have the following useful formulas.

Lemma 2.6. (i) If R and T are S-Toeplitz operators then TR = A−H(T t)H(R)

and H(T )R = B − T tH(R), for a S-Toeplitz operator A and a S-Hankel operator

B.

(ii) If T1, T2, · · · , Tn are S-Toeplitz operators then

TnTn−1 · · ·T1 = T + A1H1 + · · ·+ An−1Hn−1,

where T is a S-Toeplitz operator, Hi’s are S-Hanke and Ai’s are in B(H).
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Proof. For (i), let the matrix representations of R and T be

R ∼


R0 R−1 R−2 · · ·
R1 R0 R−1 · · ·
R2 R1 R0 · · ·
...

...
...

. . .

 , T ∼


T0 T−1 T−2 · · ·
T1 T0 T−1 · · ·
T2 T1 T0 · · ·
...

...
...

. . .

 .

If A = TR +H(T t)H(R) then the matrix representation of A is of the form

[Aij]
∞
i,j=0 =


T0 T−1 T−2 · · ·
T1 T0 T−1 · · ·
T2 T1 T0 · · ·
...

...
...

. . .




R0 R−1 R−2 · · ·
R1 R0 R−1 · · ·
R2 R1 R0 · · ·
...

...
...

. . .



+


T1 T2 T3 · · ·
T2 T3 · · ·
T3

. . .
...

...




R−1 R−2 R−3 · · ·
R−2 R−3 · · ·
R−3

. . .
...

...

 ,

where Aij =
∑∞

k=0 Ti−kRk−j +
∑∞

k=0 Ti+k+1R−(j+k+1). Thus

A(i+1)(j+1) =
∞∑
k=0

Ti−k+1Rk−j−1 +
∞∑
k=0

Ti+k+2R−(j+k+2)

=
∞∑
k=0

Ti−kRk−j + (Ti+1R−(j+1) +
∞∑
k=0

Ti+k+2R−(j+k+2))

=
∞∑
k=0

Ti−kRk−j +
∞∑
k=0

Ti+k+1R−(j+k+1) = Aij.

Thus A is S-Toeplitz. Let B = T tH(R) +H(T )R, with matrix representation

[Bij]
∞
i,j=0 =


T0 T1 T2 · · ·
T−1 T0 T1 · · ·
T−2 T−1 T0 · · ·
...

...
...

. . .




R−1 R−2 R−3 · · ·
R−2 R−3 · · ·
R−3

. . .
...

...



+


T−1 T−2 T−3 · · ·
T−2 T−3 · · ·
T−3

. . .
...

...




R0 R−1 R−2 · · ·
R1 R0 R−1 · · ·
R2 R1 R0 · · ·
...

...
...

. . .

 ,
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where Bij =
∑∞

k=0 T−i+kR−j+k−1 +
∑∞

k=0 T−(i+k+1)R−j+k. Then

B(i+1)(j−1) =
∞∑
k=0

T−i+k−1R−(j+k) +
∞∑
k=0

T−(i+k+2)R−j+k+1

=
∞∑
k=0

T−i+kR−j+k−1 + (T−(i+1)R−j +
∞∑
k=0

T−(i+k+2)R−j+k+1)

=
∞∑
k=0

T−i+kR−j+k−1 +
∞∑
k=0

T−(i+k+1)R−j+k = Bij.

Then the matrix of B has constant anti-diagonals and B is S-Hankel.

Part (ii) is proved by induction. For n = 1, the assertion is obvious. Assume

that

Tk−1Tk−2 · · ·T1 = T + A1H1 + · · ·+ Ak−2Hk−2,

with T S-Toeplitz and Hi’s S-Hankel, then, by (i), TkT = T
′
+ BH

′
, for some B,

S-Toeplitz operator T
′
and S-Hankel operator H

′
. Therefore

TkTk−1 · · ·T1 = TkT + TkA1H1 + · · ·+ TkAk−2Hk−2

= T
′
+BH

′
+ TkA1H1 + · · ·+ TkAk−2Hk−2,

as required. □

Theorem 2.7. The S-Hankel algebra is contained in the class of strongly as-

ymptotic S-Toplitz operators.

Proof. Let H and B be bounded operators with H S-Hankel. Then BH is

strongly asymptotic S-Toeplitz, since S∗nBHSn = S∗nBS∗nH → 0 in strong oper-

ator topology. Therefore, a multiplication of finitely many S-Toeplitz and S-Hankel

operators is strongly asymptotic S-Toeplitz, by Lemma 2.6. The result follows now

from Lemma 2.5. □

Theorem 2.8. Every element of the S-Hankel algebra is a strongly asymptotic

S-Hankel operator.

Proof. If H is S-Hankel, each operator of the form BH is strongly asymptotic

S-Hankel, since

JnBHSn+1 = JnBS∗n+1H → 0,

in the strong operator topology. Also every S-Toeplitz operator is strongly asymp-

totic S-Hankel. Now, as in the proof of Theorem 2.7, the result follows from Lemmas

2.5 and 2.6. □

In [3] uniformly asymptotic Toeplitz operators are characterized as operators of

the form T + K, where T is Toeplitz and K is compact. If S is a shift operator

with finite multiplicity, Matache in [5] uses the same characterization for uniformly

asymptotic S-Toeplitz operators. Here we drop the assumption on multiplicity.
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Proposition 2.9. Every uniformly asymptotic S-Toeplitz operator A is of the

form A = T + C, where T is S-Toeplitz and C is an operator such that ∥(I −
Pn)C(I − Pn)∥ → 0.

Proof. If T is S-Toeplitz, since S∗nASn − T = S∗n(A − T )Sn, the sequence

{S∗nASn} converges uniformly to T if and only if ∥S∗n(A−T )Sn∥ → 0. The matrix

representation of S∗n(A − T )Sn is obtained from that of A − T by deleting the n

first block-rows and columns. Similarly the matrix of (I − Pn)(A − T )(I − Pn) is

obtained from that of A−T by replacing the n first block-rows and columns by zero.

Therefore, for each n, the operators S∗n(A−T )Sn and (I−Pn)(A−T )(I−Pn) have

the same norm, and the result follows. □

If the multiplicity of S is finite, as Matache shows in [5], each uniformly asymp-

totic S-Toeplitz operator A is of the form A = T +K such that T is S-Toeplitz and

K is compact. Indeed, in this case, Pn’s are finite rank projections and

(I − Pn)(A− T )(I − Pn) = A− T − Fn

for some finite rank operators Fn. By the previous Proposition, {S∗nASn} converges

uniformly to T if and only if {Fn} converges to the compact operator A − T . The

converse follows from the fact that compact operators are uniformly asymptotic

S-Toeplitz. Next we characterize those S-Toeplitz operators which are uniformly

asymptotic S-Hankel.

Lemma 2.10. Let T be S-Toeplitz and H = H(T ). Then T is uniformly as-

ymptotic S-Hankel if and only if the sequence {Pn(H)} converges uniformly to H.

When the multiplicity S is finite, T is uniformly asymptotic S-Hankel if and only if

H is compact.

Proof. The first part follows from (3). If the multiplicity of S is finite, the

sequence {PnH} converges uniformly to H if and only if H is compact. □

For bounded operators A and B,

∥JnPnA∥2 = ∥A∗PnJnJnPnA∥ = ∥A∗PnPnA∥ = ∥PnA∥2,

and since (I − Pn)S
n+1 = Sn+1,

∥JnBSn+1∥ = ∥JnPnB(I − Pn)S
n+1∥ = ∥PnB(I − Pn)∥. (4)

Therefore, by Lemma 2.10, uniformly asymptotic S-Toeplitz operators are not

necessarily uniformly asymptotic S-Hankel. If the multiplicity of S is finite and A

is uniformly asymptotic S-Toeplitz, then A = T +K, for some S-Teplitz operator

T and compact operator K. Let A be uniformly asymptotic S-Hankel. By (4),

∥JnKSn+1∥ = ∥PnK(I − Pn)∥ → 0, hence the S-Toeplitz operator T must be

uniformly asymptotic S-Hankel. By Lemma 2.10, H(T ) is compact.
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Let K = ker S∗ and Pn be the finite rank projection onto K ⊕ SK ⊕ · · · ⊕ SnK.

An operator A ∈ B(H) is called quasi-triangular (relative to the sequence {Pn})
if ∥PnA(I − Pn)∥ → 0. The algebra of all quasi-triangular operators is a Banach

algebra [1]. If alg{Pn} consists of all operators A ∈ B(H) such that PnA(I−Pn) = 0,

for each n, then alg{Pn} +K(H) is the same as the algebra of all quasi-triangular

operators [1]. The (weakly closed) algebra alg{Pn} contains of all operators with

block-lower triangular matrix representation, and it is a nest algebra. When S has

finite multiplicity, uniformly asymptotic S-Hankel operators are characterized as

follows.

Theorem 2.11. Let S has finite multiplicity. Then an operator A ∈ B(H) is

uniformly asymptotic S-Hankel if and only if A = T + R, where T is a S-Toeplitz

operator with H(T ) compact, and R ∈ alg{Pn}+K(H).

Proof. The S-permutations Jn are of finite rank, and if {JnASn+1} converges

uniformly to an operator H, then H is compact. Moreover, by Lemma 2.4, H is

S-Hankel with matrix representation
H−1 H−2 H−3 · · ·
H−2 H−3 · · ·
H−3

. . .
...

...

 .

Let T be the S-Toeplitz operator with matrix representation
0 H−1 H−2 · · ·
0 0 H−1 · · ·
0 0 0 · · ·
...

...
...

. . .

 .

Then JnTS
n+1 = PnH, and since H is compact, {JnTSn+1} converges uniformly

to H. Therefore, ∥Jn(A − T )Sn+1∥ → 0, since ∥Jn(A − T )Sn+1∥ ≤ ∥JnASn+1 −
H∥ + ∥JnTSn+1 − H∥. Hence by (4), A − T ∈ alg{Pn} + K(H). Conversely, if

A = T + R with T S-Toeplitz and H(T ) compact, and R ∈ alg{Pn} + K(H),

then {JnTSn+1 = PnH} converges uniformly to H, A− T ∈ alg{Pn} +K(H), and

∥JnASn+1 − H∥ ≤ ∥Jn(A − T )Sn+1∥ + ∥JnTSn+1 − H∥. Therefore A is uniformly

asymptotic S-Hankel. □

The next result characterizes The block-matrix of weakly asymptotic S-Hankel

and S-Toeplitz operators.

Theorem 2.12. Let

[[
tk,lij

]
i,j∈Λ

]∞
k,l=0

be the block-matrix representation of oper-

ator T with respect to the basis {Snζi : n ≥ 0, i ∈ Λ} of H. Then
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(i) T is weakly asymptotic S-Hankel if and only if for i, j ∈ Λ and p ≥ 1 the

sequence {tm,m+p
ij }∞m=0 converges to some complex number t−p

ij . In this case,[[
t
−(k+l+1)
ij

]
i,j∈Λ

]∞
k,l=0

is a S-Hankel block-matrix.

(ii) T is weakly asymptotic S-Toeplitz if and only if for each integer number p the

sequence {tm,m+p
ij }∞m=0 converges to some t−p

ij . In this case,
[[
tk−l
ij

]
i,j∈Λ

]∞
k,l=0

is a S-Toeplitz block-matrix.

Proof. For (i), let T be a weakly asymptotic S-Hankel operator. Since

⟨JnTSn+1(Slζj), S
kζi⟩ =

{
⟨TSn+l+1ζj, S

n−kζi⟩ , n ≥ k

0 , n < k

=

{
tn−k,n+l+1
ij , n ≥ k

0 , n < k

by the change of indices n − k = m and k + l + 1 = p, the sequence {tm,m+p
ij }∞m=0

converges to some complex number t−p
ij for p ≥ 1 and i, j ∈ Λ.

For (ii), by assumption,

⟨S∗nTSn(Slζj), S
kζi⟩ = ⟨TSn+lζj, S

n+kζi⟩ = tn+k,n+l
ij .

and by the change indices n + k = m and l − k = p, if T is a weakly asymptotic

S-Toeplitz, the sequence {tm,m+p
ij }∞m=0 converges to some complex number t−p

ij , for

each p and i, j ∈ Λ. □

Corollary 2.13. Every weakly asymptotic S-Toeplitz operator is weakly asymp-

totic S-Hankel.
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