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Anti complex fuzzy Lie subalgebras under

s-norms

Rasul Rasuli

Abstract. The objectives of this article are to present the notions of anti com-

plex fuzzy subalgebras and anti complex fuzzy ideals of Lie algebras under S-

norms and we prove that the level subset of them are also subalgebras and ideals

of Lie algebras, respectively. Next, we introduce the union and summation of

them and we prove that the union and summation of them are also anti complex

fuzzy subalgebras and anti complex fuzzy ideals of Lie algebras under S-norms,

respectively. Finally, we investigate the homomorphic image (pre-image) of them

under Lie homomorphisms.

1. Introduction

Sophus Lie (1842-1899) introduced Lie algebras. The branch of mathematics

related to fuzzy set theory is known as fuzzy mathematics. In 1965, It was inno-

vated after the seminal paper of Zadeh [18] on fuzzy sets, Who is the founder of

this theory. A new concept of complex fuzzy sets was presented by Ramot et al. [3].

The extension of fuzzy sets to complex fuzzy sets is comparable to the extension of

real numbers to complex numbers. The development of complex fuzzy sets can be

viewed in [1]. Kim and Lee [2] considered the fuzzy Lie subalgebras and fuzzy Lie

ideals and Yehia [16, 17] investigated them. The author by using norms investi-

gated some properties of fuzzy algebraic structures[4]-[15]. In this study, we define

anti-complex fuzzy subalgebras of Lie algebra L under S-norms(ACFSS(L)). We

investigate their properties of them and characterize them with subalgebras of Lie

algebras. Next using S-norms, we introduce anti-complex fuzzy ideals of Lie algebra
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L(ACFIS(L)) and we link them with ideals of Lie algebras. Later, we obtain some

results about ACFIS(L) and ACFSS(L) under homomorphisms of Lie algebras.

Finally, we define the union and sum of the ACFIS(L) and ACFSS(L) and we

prove that the union and summation of them are also ACFIS(L) and ACFSS(L),

respectively. Finally, we prove that the homomorphic image (pre-image) of them

under Lie homomorphisms will be also ACFIS(L) and ACFSS(L), respectively.

2. Preliminaries

In this section, we first review some elementary aspects that are necessary for

this paper. For more details we refer the readers to [3, 4, 5].

Definition 2.1. A Lie algebra is a vector space L over a field F (equal to R or

C) on which L×L → L denoted by (x, y) → [x, y] is defined satisfying the following

axioms:

(1) [x, y] is bilinear,

(2) [x, x] = 0 for all x ∈ L,

(3) [[x, y], z] + [[y, z], x] + [[z, x], y] = 0 (Jacobi identity),

for all x, y, z ∈ L.

In this paper, L will be denoted as a Lie algebra. We note that the multiplication

in a Lie algebra is not associative, i.e., it is not true in general that [[x, y], z] =

[x, [y, z]]. But it is anti commutative, i.e., [x, y] = −[y, x]. A subspace H of L closed

under [, ] will be called a Lie subalgebra. A subspace I of L with the property

[I, L] ⊆ I will be called a Lie ideal of L. Obviously, any Lie ideal is a subalgebra.

Definition 2.2. Let L1 and L2 be Lie algebras over a field F. A linear transfor-

mation f : L1 → L2 is called a Lie homomorphism if f([x, y]) = [f(x), f(y)] for all

x, y ∈ L1.

Definition 2.3. Let X be a nonempty set. A complex fuzzy set A on X is an

object having the form A = {(x, µA(x))|x ∈ X}, where µA denotes the degree of

membership function that assigns each element x ∈ X a complex number µA(x))

lies within the unit circle in the complex plane. We shall assume that is µA(x)) will

be represented by rA(x)e
iwA(x) where i =

√
−1, and r : X → [0, 1] and w : X →

[0, 2π]. Note that by setting w(x) = 0 in the definition above, we return back to the

traditional fuzzy subset. Let µ1 = r1e
w1 , and µ2 = r2e

w2 be two complex numbers

lie within the unit circle in the complex plane. By µ1 ≤ µ2, we mean r1 ≤ r2 and

w1 ≤ w2.

Definition 2.4. An s-norm S is a function S : [0, 1]× [0, 1] → [0, 1] having the

following four properties:

(1) S(x, 0) = x,

(2) S(x, y) ≤ S(x, z) if y ≤ z,



ANTI COMPLEX FUZZY LIE SUBALGEBRAS UNDER s-NORMS 15

(3) S(x, y) = S(y, x),

(4) S(x, S(y, z)) = S(S(x, y), z) ,

for all x, y, z ∈ [0, 1].

We say that S is idempotent if for all x ∈ [0, 1], S(x, x) = x.

Example 2.5. The basic S-norms are

Sm(x, y) = max{x, y},

Sb(x, y) = min{1, x+ y}
and

Sp(x, y) = x+ y − xy

for all x, y ∈ [0, 1], here, Sm is the standard union, Sb is the bounded sum, Sp is the

algebraic sum.

Lemma 2.1. Let S be a s-norm. Then

S(S(x, y), S(w, z)) = S(S(x,w), S(y, z)),

for all x, y, w, z ∈ [0, 1].

3. Anti complex fuzzy Lie subalgebras under S-norms

Definition 3.1. Let L be a Lie subalgebra and µ : L → [0, 1] be a complex

fuzzy set on L. Then µ = reiw is said to be an anti complex fuzzy subalgebra of L

under s-norm S if the following conditions hold:

(1) r(x+ y) ≤ S(r(x), r(y)),

(2) r(αx) ≤ r(x),

(3) r([x, y]) ≤ S(r(x), r(y)),

(4) w(x+ y) ≤ max{w(x), w(y)},
(5) w(αx) ≤ w(x),

(6) w([x, y]) ≤ max{w(x), w(y),
for all x, y ∈ L and α ∈ F.

Denote by ACFSS(L), the set of all anti complex fuzzy subgroups of L under

s-norm S.

Definition 3.2. Let L be a Lie subalgebra and µ : L → [0, 1] be a complex

fuzzy set on L. Then µ = reiw is said to be an anti complex fuzzy Lie ideal of L

under s-norm S if the following conditions hold:

(1) r(x+ y) ≤ S(r(x), r(y)),

(2) r(αx) ≤ r(x),

(3) r([x, y]) ≤ r(x),

(4) w(x+ y) ≤ max{w(x), w(y)},
(5) w(αx) ≤ w(x),
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(6) w([x, y]) ≤ w(x),

for all x, y ∈ L and α ∈ F.

Denote by ACFIS(L), the set of all anti complex fuzzy Lie ideals of L under s-norm

S.

Example 3.3. It is well known that the set R3 = {(x, y, z) : x, y, z ∈ R} of

all 3-dimensional real vectors forms a Lie algebra over F = R with the usual cross

product ×. Define µ : R3 → E2, where (E2 is the unit disc), by

µ(x, y, z) =


0 if x = y = z = 0

0.45ei
π
2 if x = y = 0 and z ̸= 0

0.75ei
3π
4 otherwise

if S(a, b) = a + b − ab for all a, b ∈ [0, 1], then µ ∈ ACFSS(L). Let x =

(0, 0, 2) ∈ L = R3 and y = (1, 0, 0) ∈ L = R3 then [x, y] = (0, 1, 0) and so

r([x, y]) = r(0,−2, 0) = 0.75 ≰ 0.45 = r(x) thus µ /∈ ACFIS(L).

Lemma 3.1. Let µ ∈ ACFSS(L) and S be an idempotent s-norm.

(1) µ(0) ≤ µ(x) for all x ∈ L.

(2) µ(x) = µ(−x) for all x ∈ L.

(3) µ([x, y]) = µ([y, x]) for all x, y ∈ L.

(4) µ(x− y) = µ(0) implies that µ(x) = µ(y) for all x, y ∈ L.

Proof. (1) Let x ∈ L. As

r(0) = r(x+ (−x)) ≤ S(r(x), r(−x)) ≤ S(r(x), r(x)) = r(x)

and

w(0) = w(x+ (−x)) ≤ max{w(x), w(−x)} ≤ max{w(x), w(x)} = w(x)

thus r(0) ≤ r(x) and w(0) ≤ w(x) thus µ(0) = r(0)eiw(0) ≤ r(x)eiw(x) = µ(x).

(2) Let x ∈ L. Thus

r(−x) = r((−1)x) ≤ r(x) = r(−(−x)) ≤ r(−x)

and

w(−x) = w((−1)x) ≤ w(x) = w(−(−x)) ≤ w(−x)

so r(x) = r(−x) and w(x) = w(−x) then µ(x) = r(x)eiw(x) = r(−x)eiw(−x) = µ(−x).

(3) Let x, y ∈ L. Then r([x, y]) = r(−[y, x]) = r([y, x]) and w([x, y]) = w(−[y, x]) =

w([y, x]) so

µ([x, y]) = r([x, y])eiw([x,y]) = r([y, x])eiw([y,x]) = µ([y, x]).

(4) Let x, y ∈ L. Now
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r(y) = r(x− (x− y))

= r(x+ (−(x− y)))

≤ S(r(x), r(−(x− y)))

= S(r(x), r(x− y))

= S(r(x), r(0))

≤ S(r(x), r(x))

= r(x)

= r(x− y + y)

≤ S(r(x− y), r(y))

= S(r(0), r(y))

≤ S(r(y), r(y))

= r(y)

thus r(x) = r(y). Also

w(y) = w(x− (x− y))

= w(x+ (−(x− y)))

≤ max{w(x), w(−(x− y))}
= max{w(x), w(x− y)}
= max{w(x), w(0)}
≤ max{w(x), w(x)}
= w(x)

= w(x− y + y)

≤ max{w(x− y), w(y)}
= max{w(0), w(y)
≤ max{w(y), w(y)}
= w(y)

thus w(x) = w(y). Therefore µ(x) = r(x)eiw(x) = r(y)eiw(y) = µ(y). □

Proposition 3.2. Let L be a Lie subalgebra and µ : L → [0, 1] be a complex fuzzy

set on L. If S be idempotent s-norm, then the following statements are equivalent:

(1) µ = reiw ∈ ACFSS(L).

(2) The set

Lt
µ = {x ∈ L | µ(x) = r(x)eiw(x) ≤ t} = {x ∈ L | r(x) ≤ t, w(x) ≤ t}
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is a subalgebra of L for every t ∈ Im(µ).

Proof. Let µ = reiw ∈ ACFSS(L) and x, y ∈ Lt
µ and α ∈ F. We must prove

that x+ y, αx, [x, y] ∈ Lt
µ. As

r(x+ y) ≤ S(r(x), r(y)) ≤ S(t, t) = t,

w(x+ y) ≤ max{w(x), w(y)} ≤ w{t, t} = t,

r(αx) ≤ r(x) ≤ t,

w(αx) ≤ w(x) ≤ t,

r([x, y]) ≤ S(r(x), r(y)) ≤ S(t, t) = t

and

w([x, y]) ≤ max{w(x), w(y)} ≤ w{t, t} = t,

we get that x+y, αx, [x, y] ∈ Lt
µ. Then Lt

µ will be subalgebra of L for every t ∈ Im(µ).

Conversely, let Lt
µ be a Lie subalgebra of L for every t ∈ Im(µ). Let x, y ∈ L and

α ∈ F. We can say that µ(y) ≤ µ(x) = t so r(y) ≤ r(x) = t and w(y) ≤ w(x) = t

thus x, y ∈ Lt
µ and then x+ y, αx, [x, y] ∈ Lt

µ. Since

r(x+ y) ≤ t = S(r(x), r(y)),

w(x+ y) ≤ t = max{w(x), w(y)},
r(αx) ≤ t = r(x),

w(αx) ≤ t = w(x),

r([x, y]) ≤ t = S(r(x), r(y)),

and

w([x, y]) ≤ t = max{w(x), w(y)}.
So µ = reiw ∈ ACFSS(L). □

Corollary 3.3. Let L be a Lie subalgebra and µ : L → [0, 1] be a complex fuzzy

set on L. If S be idempotent s-norm, then the following statements are equivalent:

(1) µ = reiw ∈ ACFSS(L).

(2) The set

Lt
µ = {x ∈ L | µ(x) = r(x)eiw(x) < t} = {x ∈ L | r(x) < t,w(x) < t}

is a subalgebra of L for every t ∈ Im(µ).

Proposition 3.4. Let L be a Lie subalgebra and µ : L → [0, 1] be a complex fuzzy

set on L. If S be idempotent s-norm, then the following statements are equivalent:

(1) µ = reiw ∈ ACFIS(L).

(2) The set

Lt
µ = {x ∈ L | µ(x) = r(x)eiw(x) ≤ t} = {x ∈ L | r(x) ≤ t, w(x) ≤ t}

is an ideal of L for every t ∈ Im(µ).



ANTI COMPLEX FUZZY LIE SUBALGEBRAS UNDER s-NORMS 19

Proof. See proof of Proposition 3.2. □

Corollary 3.5. Let L be a Lie subalgebra and µ : L → [0, 1] be a complex fuzzy

set on L. If S be idempotent s-norm, then the following statements are equivalent:

(1) µ = reiw ∈ ACFSS(L).

(2) The set

Lt
µ = {x ∈ L | µ(x) = r(x)eiw(x) < t} = {x ∈ L | r(x) < t,w(x) < t}

is an ideal of L for every t ∈ Im(µ).

Definition 3.4. Let f : G → H be a mapping and µG = rGe
iwG and µH =

rHe
iwH be two complex fuzzy sets on G and H, respectively. Define f(µG) : H →

[0, 1] as

f(µG) = f(rGe
iwG) = f(rG)e

if(wG)

such that for all h ∈ H we define

f(rG)(h) = inf{rG(g) | g ∈ G, f(g) = h}

and

f(wG)(h) = inf{wG(g) | g ∈ G, f(g) = h}.

Also define f−1(µH) : G → [0, 1] as

f−1(rHe
iwH ) = f−1(rH)e

if−1(wH)

such that for all g ∈ G we define

f−1(rHe
iwH )(g) = rH(f(g))e

iwH(f(g)).

Proposition 3.6. Let µL = rLe
iwL ∈ ACFSS(L) and f : L → M be an

epimorphism of Lie algebras. Then f(µL) ∈ ACFSS(M).

Proof. (1) Let m1,m2 ∈ M and l1, l2 ∈ L such that m1 = f(l1) and m2 = f(l2).

Then

f(rL)(m1 +m2) = inf{rL(l1 + l2) | l1, l2 ∈ L, f(l1 + l2) = m1 +m2}
≤ inf{S(rL(l1), rL(l2)) | l1, l2 ∈ L, f(l1) = m1, f(l2) = m2}
= S(inf{rL(l1) | l1 ∈ L, f(l1) = m1}, inf{rL(l2) | l2 ∈ L, f(l2) = m2})
= S(f(rL)(m1), f(rL)(m2))

thus

f(rL)(m1 +m2) ≤ S(f(rL)(m1), f(rL)(m2)).
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Also

f(wL)(m1 +m2) = inf{wL(l1 + l2) | l1, l2 ∈ L, f(l1 + l2) = m1 +m2}
≤ inf{max{wL(l1), wL(l2)} | l1, l2 ∈ L, f(l1) = m1, f(l2) = m2}
= max{inf{wL(l1) | l1 ∈ L, f(l1) = m1}, inf{wL(l2)} | l2 ∈ L, f(l2) = m2})
= max{f(rL)(m1), f(rL)(m2)}

then

f(wL)(m1 +m2) ≤ max{f(wL)(m1), f(wL)(m2)}.
(2) Let m ∈ M,α ∈ F and l ∈ L such that m = f(l). Now

f(rL)(αm) = inf{rL(αl) | l ∈ L, f(αl) = αm} ≤ inf{rL(l) | l ∈ L, f(l) = m} = f(rL)(m)

and

f(wL)(αm) = inf{wL(αl) | l ∈ L, f(αl) = αm} ≤ inf{wL(l) | l ∈ L, f(l) = m} = f(wL)(m).

(3) Let m1,m2 ∈ M and l1, l2 ∈ L such that m1 = f(l1) and m2 = f(l2). As

f(rL)([m1,m2]) = inf{rL([l1, l2]) | l1, l2 ∈ L, f([l1, l2]) = [m1,m2]}
≤ inf{S(rL(l1), rL(l2)) | l1, l2 ∈ L, ([f(l1), f(l2)]) = [m1,m2]}
= S(inf{rL(l1) | l1 ∈ L, f(l1) = m1}, inf{rL(l2) | l2 ∈ L, f(l2) = m2})
= S(f(rL)(m1), f(rL)(m2))

then

f(rL)([m1,m2]) ≤ S(f(rL)(m1), f(rL)(m2)).

Moreover

f(wL)([m1,m2]) = inf{wL([l1, l2]) | l1, l2 ∈ L, f([l1, l2]) = [m1,m2]}
≤ inf{max{wL(l1), wL(l2)} | l1, l2 ∈ L, ([f(l1), f(l2)]) = [m1,m2]}
= max{inf{wL(l1) | l1 ∈ L, f(l1) = m1}, inf{wL(l2) | l2 ∈ L, f(l2) = m2}}
= max{f(wL)(m1), f(wL)(m2)}

then

f(wL)([m1,m2]) ≤ max{f(wL)(m1), f(wL)(m2)}.
Therefore (1) - (3) mean that f(µL) = f(rLe

iwL) = f(rL)e
if(wL) ∈ ACFSS(M). □

Proposition 3.7. Let µL = rLe
iwL ∈ ACFIS(L) and f : L → M be an epimor-

phism of Lie algebras. Then f(µL) ∈ ACFIS(M).

Proof. The proof is similart to the proof of Proposition 3.6. □

Proposition 3.8. Let µM = rMeiwM ∈ ACFSS(M) and f : L → M be an

epimorphism of Lie algebras. Then f−1(µM) ∈ ACFSS(L).
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Proof. (1) Let l1, l2 ∈ L. Thus

f−1(rM)(l1 + l2) = rM(f(l1 + l2))

= rM(f(l1) + f(l2))

= rM(f(l1) + f(l2))

≤ S(rM(f(l1), rM(f(l2))

= S(f−1(rM)(l1), f
−1(rM)(l2))

and

f−1(wM)(l1 + l2) = wM(f(l1 + l2))

= wM(f(l1) + f(l2))

= wM(f(l1) + f(l2))

≤ max{wM(f(l1), wM(f(l2)}
= max{f−1(wM)(l1), f

−1(wM)(l2)}

and so

f−1(rM)(l1 + l2) ≤ S(f−1(rM)(l1), f
−1(rM)(l2))

and

f−1(wM)(l1 + l2) ≤ max{f−1(wM)(l1), f
−1(wM)(l2)}.

(2) Let l1, l2 ∈ L. Now

f−1(rM)([l1, l2]) = rM(f([l1, l2]))

= rM([f(l1), f(l2)])

≤ S(rM(f(l1), rM(f(l2))

= S(f−1(rM)(l1), f
−1(rM)(l2))

and

f−1(wM)([l1, l2]) = wM(f([l1, l2]))

= wM([f(l1), f(l2)])

≤ max{wM(f(l1), wM(f(l2)}
= max{f−1(wM)(l1), f

−1(wM)(l2)}

then

f−1(rM)([l1, l2]) ≤ S(f−1(rM)(l1), f
−1(rM)(l2))

and

f−1(wM)([l1, l2]) ≤ max{f−1(wM)(l1), f
−1(wM)(l2)}.

(3) Let l ∈ L and α ∈ F. Then

f−1(rM)(αl) = rM(f(αl)) = rM(αf(l)) ≤ rM(f(l)) = f−1(rM)(l)
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and

f−1(wM)(αl) = wM(f(αl)) = wM(αf(l)) ≤ wM(f(l)) = f−1(wM)(l).

Then from (1)-(3) we get that f−1(µM) ∈ ACFSS(L). □

Proposition 3.9. Let µM = rMeiwM ∈ ACFIS(M) and f : L → M be an

epimorphism of Lie algebras. Then f−1(µM) ∈ ACFIS(L).

Proof. It is similar to the proof of Proposition 3.8. □

Definition 3.5. Let µ1 = r1e
iw1 and µ2 = r2e

iw2 be two complex fuzzy sets on

L. Define the union µ1 ∪ µ2 as

µ1 ∪ µ2 = r1e
iw1 ∪ r2e

iw2 = (r1 ∪ r2)e
i(w1∪w2)

such that r1 ∪ r2 : L → [0, 1] and w1 ∪ w2 : L → [0, 2π] and for all x ∈ L define

(r1 ∪ r2)(x) = S(r1(x), r2(x))

and

(w1 ∪ w2)(x) = max{w1(x), w2(x)}.

Proposition 3.10. Let µ1 = r1e
iw1 ∈ ACFSS(L) and µ2 = r2e

iw2 ∈ ACFSS(L).

Then µ1 ∪ µ2 ∈ ACFSS(L).

Proof. Let x, y ∈ L and α ∈ F. Then

(1)

(r1 ∪ r2)(x+ y) = S(r1(x+ y), r2(x+ y))

≤ S(S(r1(x), r1(y)), S(r2(x), r2(y)))

= S(S(r1(x), r2(x)), S(r1(y), r2(y)))

= S((r1 ∪ r2)(x), (r1 ∪ r2)(y))

and

(w1 ∪ w2)(x+ y) = max{w1(x+ y), w2(x+ y)}
≤ max{max{w1(x), w1(y)},max{w2(x), w2(y)}}
= max{max{w1(x), w2(x)},max{w1(y), w2(y)}}
= max{(w1 ∪ w2)(x), (w1 ∪ w2)(y)}

thus

(r1 ∪ r2)(x+ y) ≤ S((r1 ∪ r2)(x), (r1 ∪ r2)(y))

and

(w1 ∪ w2)(x+ y) ≤ max{(w1 ∪ w2)(x), (w1 ∪ w2)(y)}.
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(2)

(r1 ∪ r2)([x, y]) = S(r1([x, y]), r2([x, y]))

≤ S(S(r1(x), r1(y)), S(r2(x), r2(y)))

= S(S(r1(x), r2(x)), S(r1(y), r2(y)))

= S((r1 ∪ r2)(x), (r1 ∪ r2)(y))

so

(r1 ∪ r2)([x, y)] ≤ S((r1 ∪ r2)(x), (r1 ∪ r2)(y)).

Also

(w1 ∪ w2)([x, y]) = max{w1([x, y]), w2([x, y])}
≤ max{max{w1(x), w1(y)},max{w2(x), w2(y)}}
= max{max{w1(x), w2(x)},max{w1(y), w2(y)}}
= max{(w1 ∪ w2)(x), (w1 ∪ w2)(y)}

thus

(w1 ∪ w2)([x, y]) ≤ max{(w1 ∪ w2)(x), (w1 ∪ w2)(y)}.
(3)

(r1 ∪ r2)(αx) = S(r1(αx), r2(αx)) ≤ S(r1(x), r2(x)) = (r1 ∪ r2)(x)

and

(w1 ∪ w2)(αx) = max{w1(αx), w2(αx)} ≤ max{w1(x), w2(x)} = (w1 ∪ w2)(x).

Thus (1)-(3) give us that µ1 ∪ µ2 ∈ ACFSS(L). □

Proposition 3.11. Let µ1 = r1e
iw1 ∈ ACFIS(L) and µ2 = r2e

iw2 ∈ ACFIS(L).

Then µ1 ∪ µ2 ∈ ACFIS(L).

Proof. It is similar to the proof of Proposition 3.10. □

Definition 3.6. Let µ1 = r1e
iw1 and µ2 = r2e

iw2 be two complex fuzzy sets on

L. Define the sum µ1 + µ2 as

µ1 + µ2 = r1e
iw1 + r2e

iw2 = (r1 + r2)e
i(w1+w2)

such that r1 + r2 : L → [0, 1] and w1 + w2 : L → [0, 2π] and for all x ∈ L define

(r1 + r2)(x) = inf
x=a+b

S(r1(a), r2(b))

and

(w1 + w2)(x) = max
x=a+b

{w1(a), w2(b)}.

Proposition 3.12. Let µ1 = r1e
iw1 ∈ ACFSS(L) and µ2 = r2e

iw2 ∈ ACFSS(L).

Then µ1 + µ2 ∈ ACFSS(L).
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Proof. Let x, y, a, b, c, d ∈ L and α ∈ F.

(1)

(r1 + r2)(x+ y) = inf
x+y=a+b+c+d

S(r1(a+ b), r2(c+ d))

≤ inf
x+y=a+b+c+d

S(S(r1(a), r1(b)), S(r2(c), r2(d)))

= inf
x+y=a+c+b+d

S(S(r1(a), r2(c)), S(r1(b), r2(d)))

= S( inf
x=a+c

S(r1(a), r2(c)), inf
y=b+d

S(r1(b), r2(d)))

= S((r1 + r2)(x), (r1 + r2)(y))

and then

(r1 + r2)(x+ y) ≤ S((r1 + r2)(x), (r1 + r2)(y)).

Also

(w1 + w2)(x+ y) = max
x+y=a+b+c+d

{w1(a+ b), w2(c+ d)}

≤ max
x+y=a+b+c+d

{max{w1(a), w1(b)},max{w2(c), w2(d)}}

= max
x+y=a+c+b+d

{max{w1(a), w2(c)},max{w1(b), w2(d)}}

= max{ min
x=a+c

{w1(a), w2(c)}, max
y=b+d

{w1(b), w2(d)}}

= max{(w1 + w2)(x), (w1 + w2)(y)}

and then

(w1 + w2)(x+ y) ≤ max{(w1 + w2)(x), (w1 + w2)(y)}.

(2)

(r1 + r2)([x, y]) = inf
[x,y]=[a,b]+[c,d]

S(r1([a, b]), r2([c, d]))

≤ inf
[x,y]=[a,b]+[c,d]

S(S(r1(a), r1(b)), S(r2(c), r2(d)))

= inf
[x,y]=[a+c,b+d]

S(S(r1(a), r2(c)), S(r1(b), r2(d)))

= S( inf
x=a+c

S(r1(a), r2(c)), inf
y=b+d

S(r1(b), r2(d)))

= S((r1 + r2)(x), (r1 + r2)(y))

so

(r1 + r2)([x, y]) ≤ S((r1 + r2)(x), (r1 + r2)(y)).
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Also

(w1 + w2)([x, y]) = max
[x,y]=[a,b]+[c,d]

{w1([a, b]), w2([c, d])}

≤ max
[x,y]=[a,b]+[c,d]

{max{w1(a), w1(b)},max{w2(c), w2(d)}}

= max
[x,y]=[a+c,b+d]

{max{w1(a), w2(c)},max{w1(b), w2(d)}}

= max{max
x=a+c

{w1(a), w2(c)}, max
y=b+d

{w1(b), w2(d)}}

= max{(w1 + w2)(x), (w1 + w2)(y)}.

Thus

(w1 + w2)(x+ y) ≤ max{(w1 + w2)(x), (w1 + w2)(y)}.
(3)

(r1 + r2)(αx) = inf
αx=αa+αb

S(r1(αa), r2(αb)) ≤ inf
x=a+b

S(r1(a), r2(b)) = (r1 + r2)(x)

and

(w1 + w2)(αx) = max
αx=αa+αb

{w1(αa), w2(αb)} ≤ max
x=a+b

{w1(a), w2(b)} = (w1 + w2)(x).

Then from (1)-(3) we get that µ1 + µ2 ∈ ACFSS(L). □

Proposition 3.13. Let µ1 = r1e
iw1 ∈ ACFIS(L) and µ2 = r2e

iw2 ∈ ACFIS(L).

Then µ1 + µ2 ∈ ACFIS(L).

Proof. It is similar to the proof of Proposition 3.12. □
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