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On various properties of module Lau product of
algebras

Prakash A. Dabhi' and Yuvraj D. Pipaliya®*

ABSTRACT. Let A, B, and X be complex algebras, § : B — X be an algebra
homomorphism, and let A be an X-bimodule. We define a product on A x B as
(a1,b1)(az,b2) = (a1az+ay -0(be) +0(b1) o ag, bibs) for all (a1, b1), (az,b2) € Ax B
and write A x B with this product by A x¢ 5. We shall study some basic properties
of A xg B. When A, B and X are Banach algebras, A is a Banach X-bimodule,
and 6 is a continuous homomorphism with the norm at most 1, we determine the
ideals of A xg¢ B of a certain type, the Gelfand space of this Banach algebra, and
the module multipliers of this Banach algebra.

1. Introduction

Let A and X be complex algebras. An algebra A is a left X —module if there
exists a bilinear map (o, a) € X x A+ aoa € A satisfying (aff) oa = ao (foa)
and co (ab) = (awoa)b for all o, 5 € X and a,b € A. It is a right X —module if there
exists a bilinear map (a,a) € A X X — a-«a € A satisfying (ab) - o = a(b - o) and
a-(af)=(a-a) - pBforal a,f € X and a,b € A. It is a X'—bimodule if it is both
left X—module, right X—module, a o (a-f) = (0oa) - and (a - a)b = a(a o b)
for all a, 6 € X and a,b € A. It is a symmetric X —bimodule if it is X—bimodule,
aoca=a-aforalaecAdand a € X.

Let (A, | - [|4) and (X, | - ||x) be normed algebras. Then A is a normed left
X —module if it is a left X —module and there exists a constant P > 0 such that ||ao
alla < Pllal|lx||al|a for all @ € X and a € A. It is a normed right X —module if it is a
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right X —module and there exists a constant ) > 0 such that ||a-a||4 < Q||| 4]l 2
for all a € A and a € X. It is a normed X —bimodule if it is an X' —bimodule and
there is R > 0 such that [|[aocal||4 < Rl x||a|l4 and ||a - af|4 < Rlla||alla||x for all
a € Aand o € X. It is a Banach X—bimodule if both A and X are complete as a
normed linear space.

Definition 1.1. Let A, B, and X be complex algebras, § : B — X be an
algebra homomorphism, and let A be an X—bimodule. We define a product on
A x B as

(a1,b1)(ag, by) = (ajas + aq - 0(bs) + 0(by) o as, bybs)

for all (a1,b;), (az,b2) € A x B. Then A x B together with co-ordinatewise linear
operations and the above product is an associative algebra. We denote this algebra

by.AXeB.

If (A - 1la), (B,]| - lls), and (X,]| - ||x) are Banach algebras, A is a Banach
X —bimodule and ¢ : B — X is an algebra homomorphism with ||f|| < 1, then
A x4 B is the Banach algebra with the norm ||(a,b)||; = ||a||a + [|0]5-

If we define a norm on A x4 B as |(a,b)| = max{|la||4 + [|0(D)] x, ||b]|5} for all
(a,b) € A xy B, then (A x¢ B,|-|) is also a Banach algebra. In fact, ||(a,bd)|; <
2|(a,b)| < 2|(a,b)||; for all (a,b) € A x4 B. If we identify A x {0} with A and
{0} x B with B in A xy B, then A and B are closed ideal and closed subalgebra of
A xg B respectively and the quotient (A x4 B)/A is isometrically isomorphic to B,
ie., A Xy B is a strong splitting Banach algebra extension of B by A. Throughout
the paper, all algebras are considered to be complex algebras.

The above multiplication on A x B generalizes some known multiplication on

the product space A x B. They are as follows.
(1) Let A and B be algebras, let X = C, and let § : B — C be a homomorphism.
Then A is a C—bimodule with respect to the module operations defined as a - a =
aoa = «aa for all « € C and a € A. It can be seen that A x4 B is the #—Lau
product of A and B.

Lau first introduced §—Lau product in [7] for certain classes of Banach algebras.
Later, it was extended and studied by Monfared for general case in [8]. Various
Banach algebra properties of A x4 B are studied in different papers, for example,
1,2, 4, 5, 6, 8, 9] etc.

(2) Let A and B be algebras, and let X = A. It is clear that A is a A—bimodule
with respect to the module operations defined as (a1, a2) € A x A — ajas € A and
(a1,a9) € AX A aga; € A for all aj,as € A. Let 0 : B — A be an algebra
homomorphism. It can be seen that A x4 B is the T'—Lau product of A and B [3].
(3) Let A and B be algebras, B = X', A be an X—bimodule, and 6 = I, the identity
map. Then @ is an algebra homomorphism and A is an algebraic B—module. Then
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A xg B is the 0x —product of A and B. Ramezanpour and Barootkoob introduced
> —product in [10].

(4) Let A, B, X be algebras, and let A be an X' —bimodule. If we define 6 : B — X
as 6(b) = 0 for all b € B, then 6 is an algebra homomorphism. Clearly, A x4 B is
the Cartesian product of A and B.

2. Some basic properties of A x4 B

An algebra A is commutative if ab = ba for all a,b € A. An element e € A is an
identity for A if ae = a = ea for all a € A.

Lemma 2.1. Let A, B, and X be algebras, 0 : B — X be an algebra homo-
morphism, and let A be a symmetric X—bimodule. Then the following statements

hold.

(1) A xq B is commutative if and only if A and B are commutative.
(2) (0,ep) is the identity for A x¢ B if and only if eg is the identity for B and
a-0(eg) =a for all a € A.

PROOF. The statement (1) is a simple verification.

(2) Let (0, eg) be the identity for AxB. It follows from (a-0(ep), beg) = (a,b)(0,e5) =
(a,b) = (0,ep)(a,b) = (6(ep)oa, epdb) that a-0(ep) = a = 0(eg)oa and beg = b = egb
for all a € A and b € B.

Conversely, let es be the identity for B and a-6(ep) = a for all a € A. Since A is
a symmetric X —bimodule, (a,b)(0,eg) = (a - 0(ep), bes) = (a,b) and (0, ep)(a,b) =
(O(ep) o a,egb) = (a,b) for all (a,b) € A x4 B. O

A net {e,}aca of elements of A is a bounded left approzimate identity for a
normed algebra (A, || - ||4) if there exists some M > 0 such that ||ey||4 < M for all
a € A and |leqa — alja — 0 for all @ € A. Similarly, a bounded right approzimate
identity and a bounded (two sided) approximate identity are defined.

Proposition 2.2. Let (A, | -||l4), (B, |l5), and (X, |- |lx) be normed algebras,
0 : B — X be an algebra homomorphism with ||0|| < 1, and let A be a normed
X —bimodule. Then {(ea, fo)}aca s a bounded left (right, or two sided) approximate
identity for A xg B if and only if {fa}aca s a bounded left (right, or two sided)
approzimate identity for B, {es}aca is bounded, |eqa + 0(f,) o a — al|4 — 0, and
lea - 6(b)[|.a — 0.

PROOF. Let {(eq, fa)}aca be a bounded left approximate identity for A x, B.
Then there exists some M > 0 such that |(e,, fo)] < M for all @ € A and
|(ea, fa)(a,b) — (a,b)] — 0 for all (a,b) € A xy B. By definition of | - |, the nets
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{€a}aca and { fo}aea are bounded. If b € B,

max{|leq - 0(b)[la, [Ifab = blls} < max{[leq - 6(b)[[a + 10(fab —b)||x, [ fab — bll5}
= |(ea - 0(b), fab — b)| = [(€a; fa)(0,b) — (0,0)].
Ifae A,

leaa +0(fa) oa—alla = max{lleaa+0(fa) 0 a —alla+0][x, 0[5}
= [(eaa +0(fa) 0 a —a,0)] = [(ea, fa)(a, 0) = (a, 0)].
So, [[fab— 0|z = 0, ||ea - 0(b)||4 — 0, and ||eqa + 0(fs) ca —al|a — 0.
Assume the converse. Let (a,b) € A xy B. Then
|(€a, fa)(a; b) — (a,b)]
= max{|[eaa + e - 0(b) + 0(fa) 0 a — alla + [|0(fab = b)l|x, || fab — bl 5}
< max{|leaa + 0(fa) 0 a — alla + llea - 0(0) [ 4 + [|0(fab = b) ||, [ fab — bll5}-

It follows from the fact ||f|| < 1 and our assumptions that {(eqa, fa)}aea is @ bounded
left approximate identity for A x4 B. O

An element a € A is an idempotent if > = a and a non-zero idempotent a is a
manimal idempotent if aAa is a division algebra or aAa = Ca. Let A, B, and X be
algebras, 0 : B — X be an algebra homomorphism. It is clear that (a,b) € A x4y B
is an idempotent if and only if b € B is an idempotent and a? +a-0(b) +6(b)oa = a.

Proposition 2.3. Let A, B, and X be algebras, 0 : B — X be an injective
algebra homomorphism. Then (a,b) is a minimal idempotent in A xq¢ B if and only
if (a,0(b)) is a minimal idempotent in A< 0(B) and b is a minimal idempotent in
B provided b # 0.

PROOF. Let (a,b) € A Xy B be a minimal idempotent, i.e., (a,b)? = (a,b) and
(a,b)(A x¢ B)(a,b) = C(a,b) or (a,b)* = (a,b) and given (ag,by) € A x¢ B, there
exists some A, p,) € C such that (a, b)(ao, bo)(a,b) = Aagpe) (@, b). So,

a’*+a-0(b) +0(b)oa = a, (1)
b’ =b and (2)

aapa + (a - 0(bo))a + (6(b) o ap)a + aag - 6(b) + (a - 6(by)) - O(b)
+(0(b) 0 ag) - O(b) + 8(bby) © a = Ay p0)as (3)
bbob = Aag.p0)b- (4)
It follows from equations (2) and (4) that if b # 0, then b is a minimal idempotent
with Aaep0) = A0pe) for all ag € A and it follows from above four equations that
(a,0(b))* = (a,0(b)) and (a, 0(b))(ag, 8(b))(a, (b)) = Aag.b)(a, 0(b)) for all (ag, by) €
A x4 B.
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Conversely, let b € B be a minimal idempotent, i.e., b> = b and for given
by € B, there exists some )\, € C such that bbb = A\, b. This gives 0(bb1b) =
O(\p,b). Since (a,0(b)) € A > 0(B) is a minimal idempotent, i.e., (a,0(b))* =
(a,0(b)) and for given (ag,0(by)) € A x §(B), there exists some A4 050)) € C such
that (a, 6(b))(ao, 0(bo))(a, 0(b)) = Ata (b)) (@, (b)) So, (a, 8(b))(ao, 0(b1))(a, 6(b)) =
Nao,0(b1)) (@, 0(b)). It follows from injectivity of 6 that A e(,)) = Ap,- The case b =0
is easy to verify. O

The following example show that the condition that # is injective in the Propo-
sition 2.3 is necessary.

Example 2.1. We consider the semigroup N with the gcd binary operation and
we denote N with this binary operation by Ngq. The semigroup algebra

CN)={f:N=>C:|fll =D |f(n) < oo}

neN

is a commutative Banach algebra with the above norm and the convolution multi-
plication

(fxg)n)= > flug(v) (f,9€ ' (Nga)neN).

ged(u,v)=n

We write an element f of £!'(Ngeq) by f = >, . f(n)d,, where 6, : N — C is defined
by 6,(n) =1 and 6,,(m) = 0 if m # n. Take A = B = (*(Ng.q) and define § : B — C
by 0(f) = > ,en f(2n) for all f € B. Then 0 is a complex homomorphism on B
and 6 is not injective. Note that 0, x 0, = Ogca1,m) = 01 for all m € N. So, if

f =3 enf(n)d, € ({(N), then 6 « f = > f(n)dr = (3,,en f(1)) 61. Clearly,
01 %01 =01 and 9y * [ *x§; = (ZneN f(n)) 01, i.e., d; is a minimal idempotent in B.
We now show that (d1,6(d1)) = (01,0) is a minimal idempotent in A > §(B). First
observe that (d1,0)(01,0) = (41,0). Let (f,0(g)) be in A< 6(B). Then

(61,0)(f,0(9))(61,0) = (1= f +0(g)d1,0)(1,0)

= (Zf )61, 0)(61,0)

neN

= (Zf >6l,>
= (Zf<n>+0<g>> (61,0).
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Therefore (d1,6(61)) is a minimal idempotent in A > 0(B). We now show that
(01,01) is not a minimal idempotent in A x4 B. Notice that

(01,01)(02,02)(01,01) = (61 % 02 + 0(d2)01 + 60(61)2,61) (61, 61)
(01 + 01,01) (61, 01)
= (261,61),

and (201,61) # A(01, 1) for any A € C. Therefore (d1,d;) is not a minimal idempo-
tent in A x4 B.

2.1. Ideals of the type I x J in A x4 B. A subset I of A is a left ideal in A
if I is a linear subspace of A and al C I for all a € A. Similarly, a right ideal and
an ideal are defined. A left ideal I is a modular left ideal in A with modular unit u
if there exists u € A such that au —a € [ for all a € A. Similarly, a modular right
ideal and a modular ideal are defined. An ideal I is proper if I # A. A proper left
ideal I is maximal if J =1 or J = A whenever J is a left ideal in A containing .
An ideal I is a prime ideal if a € I or b € I whenever a,b € A and ab € I.

Proposition 2.4. Let K be a left ideal in a Banach algebra A xqo B. Define
two sets I = {a € A : (a,b) € K for someb € B} and J = {b € B : (a,b) €
K for some a € A}. Then the following statements hold.

(1) J is a left ideal in B.

(2) If 0 vanishes on J, then I is a left ideal in A. If in addition A has a left
approzimate identity and K is closed in A x¢ B, then K =1 x J.

(3) If 6 does not vanish on J and A-0(J) C I, then I is a left ideal in A

PROOF. (1) Let b € J. Then there exists some a € A such that (a,b) € K. Let
by € B. Then (6(b1) o a,bib) = (0,b1)(a,b) € K, i.e., we get an element §(b;)oa € A
such that (8(by) o a,b;b) € K. Hence byb € J.

(2) Let 6 vanish on J and a € I. Then there exists some b € B such that
(a,b) € K. Since a € I C A, by definition of J, we have b € J. Let a; € A. Then
(a1a,0) = (a4 ay - 0(b),0) = (a1,0)(a,b) € K, i.e., we get an element 0 € B such
that (a1a,0) € K. Therefore, aja € 1.

Let {aq}aca be a left approximate identity for A and K be closed in A x4 B.
By definitions of I and J, K C I x J. Now, let p € I and ¢ € J. We show that
(p,q) € K. Since p € I and g € J, there exist b € B and a € A such that (p,b) €
K and (a,q) € K. Then (a,a,0) = (aqa + a - 0(¢),0) = (aq,0)(a,q) € K and
|(aqa,0) — (a,0)] = |lana — a||la — 0. Since K is closed in A x4 B, (a,0) € K.
Similarly, we can show that (p,0) € K. So, (0,q) = (a,q) — (a,0) € K. Hence
(p,q) = (p,0) +(0,9) € K.

(3) It follows from the proof of (2). O
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Lemma 2.5. Let I and J be two non-empty subsets of A and B respectively.
Then I x J is a left ideal in A X B if and only if I is a left ideal in A, J is a left
ideal in B, A-0(J) C I and (B)oI C I.

PROOF. Let I x J be a left ideal in A x4y B. Then for all (a,b) € A Xy B and
(i,7) € IxJ, (ai+a-0(5)+0(b)oi,bj) = (a,b)(i,5) € I xJ or ait+a-0(j)+0(b)oi € I
and bj € J. So, J is a left ideal in B and ai +a - 0(j) + 0(b) o i € I. In particular,
taking a = 0, we get 6(b)oi € I, ie., §(B) ol C I and taking i = 0 and j = 0
respectively, we get a - 0(j) € I, ie., A-0(J) C I and ai + 6(b) oi € I and so
ai = (ai +0(b) oi) — (A(b) 0d) € I.

Assume the converse. Let (a,b) € A xg B and (i,5) € I x J. Then (a,b)(i,j) =
(ai +a-0(3)+6(b)oi,bj) € I x J by our assumption. O

Let A be an X—bimodule. A left ideal I is a modular left X —ideal in A with
modular X —unit x if there exists x € X such that ax —a € [ for all a € A. Similarly,
a modular right X —ideal and a modular X —ideal are defined.

Proposition 2.6. Let I be a left ideal in A and J be a left ideal in B. Then
I x J is a modular left ideal in A x¢ B with modular unit (i,7) if and only if I is a
modular left X—ideal in A with modular X —unit 0(j), J is a modular left ideal in
B with modular unit j, A-60(J) C I and §(B)o I C I.

PROOF. Let I x J be a modular left ideal in A xy B with modular unit (3, j).
Then for all (a,b) € AxyB, (a,b)(i,j) — (a,b) € I x Jor ai+a-0(j)+6(b)oi—a €
I and bj — b € J. So, J is a modular left ideal in B with modular unit j and
ai+a-0(j)+0(b)oi—a€ Il By Lemma 2.5, I is a left ideal in A, J is a left ideal
in B, and A-60(J) C I, 0(B)ol C I. Since [ is a left ideal in A, ai € I and so
a-0(j)+0(b)oi—a € [ forall a € A and b € B. In particular, taking b = 0, we get
a-0(j) —a €I for all a € A. So, I is a modular left X —ideal in A with modular

X —unit 0(j).
Assume the converse. Let (a,b) € A xy B and (i,75) € I x J. Then (a,b)(i, ) —
(a,b) = (ai +a-0(j) +0(b)oi—a,bj —b) € I x J by our assumptions. O

Lemma 2.7. Let K be a left ideal in A X B containing {0} x B. Then there is
a left ideal I in A such that K = 1 x B. If K is a left ideal in A Xy B containing
A x {0}, then there is a left ideal J in B such that K = A x J.

PROOF. Let K be a left ideal in A x4 B containing {0} x B. Let I = {a € A :
(a,b) € K for some b € B}. It is enough to prove that [ is a left ideal in A. For
that, let i € I. Then there exists b € B such that (i,b) € K. Since (0,b) € {0} x B C
K,(i,0) € K. Let a € A. Then (ai,0) = (a,0)(¢,0) € K. Therefore I is a left ideal
in A.

One can prove the second statement in a similar way. 0J
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Proposition 2.8. Let I and J be left ideals of A and B respectively. Then the
following statements hold.

(1) I x B is a mazimal left ideal in A x¢ B if and only if I is a mazimal left
ideal in A, A-0(B) C I and O(B)oI C I.

(2) A x J is a mazimal left ideal in A X B if and only if J is a mazimal left
ideal in B.

(3) I x J is a maximal left ideal in A x¢ B if and only if either I = A with J
is a mazximal left ideal in B or J = B with I is a mazimal left ideal in A,

A-0(J)C T and §(B)oI C 1.
Proor. It follows from Lemma 2.5 and Lemma 2.7. O

Proposition 2.9. Let A be a symmetric X —bimodule, I be an ideal in A, and
J be an ideal in B. Then I x J is a prime ideal in A x¢ B if and only if I is a prime
ideal in A, J is a prime ideal in B, A-0(J) C I and 6(B)oI C I.

PROOF. Let I x J be a prime ideal in A x4 B. It follows from Lemma 2.5 that [
is a left ideal in A, J is a left ideal in B, A-0(J) C I and §(B)ol C I. Let aj,as € A
be such that ayas € I. Then (aq,0)(as,0) = (ajaz,0) € I x J. It follows that a; € I
oras € I,i.e., I is a prime ideal in A. Similarly, J is a prime ideal in B.

Assume the converse. By Lemma 2.5, I xJ is an ideal in AxyB. Let (a1, 1), (as, bs) €
A Xy B be such that (a1, b1)(az,b2) € I X J or ajag + ay - 0(by) + 6(by) oas € I and
bibs € J. Since J is a prime ideal in B, either b; € J or by € J. We are in a situation
of two cases.

Case I: Let b; € J. Since A is a symmetric X —bimodule, 8(J)o A = A-0(J) C I.
So, 0(b1) o ag = ay - 6(by) € I. Therefore, ajas + a; - 0(by) € I. This implies that
(a1,0)(ag, by) = (aras+ay-0(by),0) € I x {0}. It is clear that I is a prime ideal in .4
if and only if 7 x {0} is a prime ideal in A x {0}. So, we get either (a;,0) € I x {0}
or (az,by) € I x {0}. If (a1,0) € I x {0} then ay € I and so (ay,by) € I x J. If
(ag,by) € I x {0} then as € Z and by =0 € {0} C J. So, (ag,by) € I x J.

Case II: Let by € J. Then a; -0(bs) € I and so ajas +6(by) oay € I. This implies
that (a1, b1)(az,0) = (ayas + 0(by) 0 as,0) € I x {0}. It follows from the above same
argument that either (ay,by) € I x J or (ag,by) € I x J. O

2.2. Gelfand space of A x4y B. Let A be a commutative Banach algebra and
A* be the dual of A. A nonzero linear map ¢ : A — C is a complex homomorphism if
@(ab) = ¢(a)p(b) for all a,b € A. Let A(A) be the set of all complex homomorphism
on A. Clearly, A(A) C A*. For a € A, let a : A(A) — C be a(¢) = ¢(a) for all
¢ € A(A). The weakest topology on A(A) in which all @, a € A, are continuous
is the Gelfand topology on A(A). The set A(A) with the Gelfand topology is the
Gelfand space of A. Note that if a € A, then @ € Cy(A(A)), where Cyp(A(A)) is
the collection of all continuous functions on A(.A) vanishing at infinity. The map
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a € A a e Cy(A(A)) is the Gelfand map. A commutative Banach algebra A is
semisimple if the Gelfand map is injective.
Next theorem gives the Gelfand space of A x, B.

Theorem 2.10. Let A, B, and X be commutative Banach algebras, A be a
symmetric Banach X —bimodule, and 6 : B — X be an algebra homomorphism
with ||0|| < 1. Then the Gelfand space A(A xg B) of A xy B is a disjoint union of
the sets E = {(¢,¢(ay,-0(-))) : ¢ € A(A),a, € A such that p(a,) =1} and F =
{(0,0): ¥ € AB)Y.

PROOF. Let @ € A(AxyB). Since A(AxgB) C (AxaB)*, there exist ¢ € A* and

¢ € B* such that ® = (¢, ). Let (a1, b1), (az, ba) € AxpB. Then (¢, ¢)[(a1,b1)(az, be)] =

(¢, ¥) (a1, b1)(p,¥)(az, ba) or (p,¥)(ar1az + ay - 0(bz) + 0(b1) © az, biba) = (p(a1) +
Y(b1))(p(az) +1(ba)) or
p(araz +ay - 0(ba) + 0(b1) 0 az) + ¥ (bib2) = ¢(a1)p(az) + @(a1)y(b2)
+(br)p(az) + (1) (b2). (5)

In particular, taking by = by = 0 and a; = as = 0 in equation (5) respectively,
we get p(ayaz) = @(ay)p(az) and ¥ (b1be) = 1(by)1(by). The equation (5) gives

(a1 - 0(b2)) + @(0(b1) 0 az) = @(ar)¥(be) + (1) (as) (6)

for all (a1, 1), (az,b2) € A xg B. Let ¢ # 0. Then there exists a, € A such that
¢(a,) = 1. Taking a; = as = a, and by = by = bin equation (6), we get p(a,-0(b)) =
¢(ay)(b). Therefore, ¥(-) = p(a, - 0(-)). One can observe that ¢ (-) is independent
of the choice of a, satisfying ¢(a,) = 1. Indeed, let a1, as € A such that p(a;) =
1 = ¢(az). Since A is a symmetric X —bimodule, we have (a; - (-))az = a1 (6(-) o as)
and so ¢((a1 - 0(-))az) = (a1 (0(-) 0 az)) or @(ar - 6(-))p(az) = ¢(a1)p(0(:) o az) or
@(ar - 0(-)) = p(0(-) 0 ag) for all p € A(A). Therefore, the map ¢(a, - 6(-)) is well-
defined. Since ¢(a,) = 1 and A is symmetric, the map ¢(a, - 0(-)) is multiplicative.
Indeed,

plag - 0(biba)) = @la, - (0(b1)0(b2))) = 90(%-(9(51)9(62)))%%)
#((ag - (0(b1)0(b2)))a
(
(

O \_/
\_/
‘G
—~
=
<
‘G
%
—~

= ¢([ag - 6(b1)][0(b2)
= plag - 0(b1))¢(a, ())

for all by,by € B. Therefore, (p,1) € E. Next, let ¢ = 0. Then ¢ € A(B) and
(0,v) € F. Hence A(AxyB) C EUF.
Conversely, let ® € E'U F. Then computation shows that ® € A(A xy B). O

Corollary 2.11. Assume the hypothesis of Theorem 2.10. Then sets E and F
are open and closed in A(A Xq B) respectively.
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PROOF. Let (¢, ¢(0(-) o a,)) € E. Since p € A(A), there exists ap € A such
that ¢(ag) # 0. Take ¢ = M and U = U ((p,¢(0(:) 0 ay)), (ap,0),e). Then U is
a neighborhood of (¢, p(6(-) o a,)) and

U = {(p1,91) € A(A xg B) :|(1,41)((a0,0)) = (0, 9(6(:) 0 a)) (a0, 0))[< €}
= {(1,91) € A(A % B) : [¢1(a0) = plao)| < e}

If we take any point (0,v) € U, then 4e = |p(ap)| < €, a contradiction. Therefore,
U C E. Hence FE is open in A(A x4 B) and so F is closed in A(A x4 B). O

Corollary 2.12. Assume the hypothesis of Theorem 2.10. Then A Xy B is
semisimple if and only if both A and B are semisimple.

PRrROOF. Let A xyB be semisimple. Let a € A and b € B satisfy a = 0 and b = 0,
i.e., a(p) =0 and b(yh) = 0 for all ¢ € A(A) and ) € A(B). Then @(CD) =0 and
@(@) =0 for all & € A(A x4 B). Since A x4 B is semisimple, a = b = 0.

Conversely, let A and B be semisimple. Let (a,b) € A x4 B be such that
@((gp, )) = 0 for all (p,v) € A(A x4 B). In particular, taking ¢ = 0, we get

b(y) = (Z,\b)(((),w)) = 0. It follows from semisimplicity of B that b = 0, which
implies that a(¢) = (a,0)((¢, ¢(0(0) 0ca)) = 0. The semisimplicity of .4 implies that

a=0. O

2.3. Module multipliers of A x4 B. Let A, X, and X be Banach algebras,
and let A be an X'—bimodule. Then X is a Banach A — X—bimodule if X is a
Banach A—bimodule as well as a Banach X —bimodule which satisfies conditions
(ax)a = a(za), z(aa) = (za)a, a(ax) = (ca)z, a(za) = (az)a, x(aa) = (xa)a, and
(aa)xr = a(ax) for all a € A, x € X, and o € X. Let X be an A—bimodule, and
let Annx(A) :={z € X : ax = 0 = za for all a € A} be the annihilator of A in
X. A homomorphism 7" : A — X is a module homomorphism if T(a1a2) = T'(a1)as
and T'(ajaz) = a1T(ay) for all aj,as € A. Moreover, if T'(aj)as = a;T(ay) for all
a,as € A, then it is a module multiplier. Let M (A, X) be the set of all module
multipliers from A to X.

Let X be a Banach A — X'—bimodule, Y be a Banach B — X —bimodule, and
0 : B — X be a module homomorphism. Define module multiplications on X X
Y as a(z,y) = (ax,ay), (z,9)a = (za,ya), (a,b)(z,y) = (ax + 6(b)z, by), and
(z,y)(a,b) = (za + x0(b),yb), respectively, for all &« € X, (z,y) € X x Y and
(a,b) € A xyB.

Lemma 2.13. Let A, B, and X be Banach algebras, A be a symmetric Banach
X —bimodule, B be a Banach X—bimodule, and let 0 : B — X be a module homo-
morphism with ||6|| < 1. If X is a Banach A — X—bimodule and Y is a Banach
B — X —bimodule, then X XY is a Banach (A x¢ B) — X —bimodule with the above

module multiplications.
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ProOOF. We have X a Banach A—X —bimodule and Y a Banach B—X —bimodule
with the module multiplication (a,x) € AXX — ax € X, (z,a) € X XA+ za € X,
() e X x X —are X, (r,a) e X x X —axac€ X, (byy) e BXY — by ey,
(y,b) e Y xB—ybeY, (ay) e X XY —»ayeY, and (y,a) €Y x X —»ya €Y
foralae X,z € X, y€Y, a€ A, and b € B. Define four mappings as below.

(1) (o, (z,y) € X X (X XY) = a(z,y) € (X xY),
(2) ((z,y),0) e (X XY) X X = (z,y)a € (X xXY),
(3) ((a,b),(z,y)) € (AxgB) x (X xY) > (a,b)(x,y) € (X xY), and
(4) ((z,y), (a,b)) € (X xY) x (A x¢ B) = (z,y)(a,b) € (X xY),
where module multiplications are defined as said in hypothesis. One may verify

that X xY together with above module multiplications satisfies all conditions to be
(A x4 B) — X—bimodule. O

The following theorem gives characterization of module multipliers from A x4 B
to X xY.

Theorem 2.14. Let A, B, and X be algebras, A be an X —bimodule, B be an
X—bimodule, 0 : B — X be a module homomorphism, X be a symmetric A-X -
bimodule, Y be a B-X-bimodule with Anny (B) = {0}, and let T : AxgB — X xY
be a module homomorphism. Then T € M(A xg B, X xY) if and only if there
exists module homomorphisms T1 : A xXg B — X and Ty : A x9g B — Y such
that T = (T1,Tz), T1 |axgoy€ M(A, X), To axoy= {0}, T2 |{oyx5 € M(B.Y), and
0<b1>T1(a2, 172) = Tl((), b1>a2 + Tl(O, bl)e(b2> fOT all o € A and bl, bg € B.

PrOOF. Let T € M(A Xo B,X X Y) Let (al,bl),(ag,bg) c A X B. Then
(T'(ax,b1))(az, ba)
= (&1,b1)(T(a2,bz)) or (Tl(al,bl),TQ(al,bl))(GQ,52) = (a1>bl)<T1(@27b2)7T2(a2ab2))
or

T\ (a1, br)as + T1(ay, b1)0(b2) = a1 Ty (az, ba) + 0(by)T1(az, ba) (7)
and
TQ(CH, bl)bQ = b1T2(02, bz)- (8)
Taking a; = by = 0 in equations (7) and (8), we get T71(0, by)as = 6(by)711(az,0) and
biT5(az,0) = 0. Since Anny (B) = {0}, Th(as,0) = 0 for all ay € A, ie., T |axio1=
{0}. Taking b; = by = 0 in equations (7) and (8), we get T’ (a1, 0)as = a7} (ay, 0) for
all ay, a0 € A, ie., Th |axqoy€ M (A, X). Taking a; = ay = 0 in equations (7) and (8),
we get Tl(o,bl)e(bg) = 0<b1>T1(0,bQ) and TQ(O, bl)bg = blTQ(O,bQ) for all bl,bg S B,
i.e., Ts |foyx8 € M(B,Y’). One may observe that for all ay € A and by, by € B,
H(bl)Tl (CZQ, bg) = e(bl)[Tl (ag, O) + T1 (0, bQ)]
= Q(bl)Tl (CLQ, 0) + Q(bl)Tl (0, bg)
= T1(0,b1)as + T1(0,b1)0(b2).
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The converse can be verified easily. 0
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